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Smart manufacturing will transform the oil refining and petrochemical sector into a connected, information- 
driven environment. Using real-time and high-value support systems, smart manufacturing enables a coor-
dinated and performance-oriented manufacturing enterprise that responds quickly to customer demands 
and minimizes energy and material usage, while radically improving sustainability, productivity, innovation, 
and economic competitiveness. In this paper, several examples of the application of so-called “smart manu-
facturing” for the petrochemical sector are demonstrated, such as the fault detection of a catalytic cracking 
unit driven by big data, advanced optimization for the planning and scheduling of oil refinery sites, and 
more. Key scientific factors and challenges for the further smart manufacturing of chemical and petrochem-
ical processes are identified.
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1. Introduction

Advanced or smart manufacturing has recently been gaining 
increasing attention from the academia and industry in major 
economies. For example, Germany’s Industry 4.0, which integrates 
resources, information, materials, and people to formulate a cyber- 
physical system, has been the priority of many enterprises, espe-
cially those that are small and medium-sized. In the United States, 
the Smart Manufacturing Leadership Coalition (SMLC), which has 
its headquarters in Los Angeles, California, leads the new Smart 
Manufacturing Innovation Institute, in partnership with the US De-
partment of Energy [1]. Aiming to spur advances in smart sensors 
and digital process controls, which can radically enhance the effi-
ciency of advanced manufacturing in the United States, the SMLC 
brings together a public-private consortium of nearly 200 partners 
from the academic, industrial, and non-profit arenas, and brings 
in over 140 million USD from these members. Unlike the United 
States and Germany, which have developed industries, China is in 
its developing stage. Many of the control/management systems and 
engineers in China are still stuck at the level of Industry 2.0. There-
fore, in order to address China’s national conditions and the gap be-
tween national and developed economics, the Chinese government 
launched a strategy called Made in China 2025 in 2015 [2]. Smart 

manufacturing is regarded as the central element in the Made in  
China 2025 strategy. Both Industry 4.0 and smart manufacturing focus 
on transforming the industrial sector into a connected, information- 
driven environment, in which production systems and supply 
networks can be optimized via real-time and customer-oriented  
internal vertical integration within smart factories, horizontal inte-
gration within upstream and downstream enterprises, and end-to-
end integration from the supply chain to the customers.

Process systems engineering (PSE), which has played an essential 
role in facilitating advanced chemical processing and production 
since the 1960s [3], will play a key role in achieving smart manufac-
turing in oil refineries and petrochemical plants by encompassing 
the following advances in the processing unit, the plant, the enter-
prise, and the supply chain:

•	Advanced	sensing	and	instrumentation;
•	Real-time	flowsheet	optimization	and	control	under	uncertainty;
•	Green	molecular	design	for	high-value-added	products;
•	Adjustable	big	data	analytics	for	process	optimization,	monitor-
ing,	and	management;

•	Advanced	hardware	and	software	platforms;	and
•	Predictive	modeling	and	simulation	technologies.
It should be noted that Fig. 1 merely highlights the key features 

of smart manufacturing from the perspectives of PSE, rather than 
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providing the framework of smart manufacturing. To our knowl-
edge, smart manufacturing should combine information, technology 
(beyond PSE technologies), and human ingenuity in order to bring 
about a rapid revolution in the development and application of 
manufacturing intelligence, and to improve agility, flexibility, pro-
ductivity, and quality. This paper briefly outlines examples of the 
application of so-called “smart manufacturing” at the China Petrole-
um and Chemical Corporation (Sinopec).

2. Brief overview of smart manufacturing at Sinopec

In China, Sinopec is a pioneer in the launching of smart process 
manufacturing. With the goal of smart manufacturing, Sinopec has 
established four demonstration projects since 2012: smart petro-
chemical pilot units (including Jiujiang, Zhenhai, Maoming, and 
Yanshan), an integrated business-management platform, an informa-
tion technology shared-service center, and a mobile application [4]. 
Through almost four years of construction, great changes have taken 
place in the selected four smart pilots in terms of automation, digital-
ization, and visualization. For example, advanced control is now avail-
able for over 90% of all processes in these four pilots and productivity 
has improved by more than 10%. Production optimization has been 
shifted from off-line optimization to on-line integrated optimization.

Fig. 2 illustrates a general integrated optimization platform cur-
rently running at Sinopec Jiujiang Company. Based on existing com-

mercial software such as a manufacturing excution system (MES), 
enterprise resource planning (ERP), and a laboratory information 
management system (LIMS), flowsheet optimization, planning, 
and scheduling are integrated. At Maoming and Yanshan, integrated 
real-time optimization and advanced process control have achieved 
profit-oriented closed-loop optimal running for ethylene production. 
Due to obvious improvements in the yields of ethylene and propyl-
ene, the overall incomes for Yanshan and Maoming have improved by 
25.12 million and 41.94 million CNY per year, respectively. In addition 
to the implementation of an integrated optimization framework and 
platform, big data analytic technologies and tools have been studied 
and implemented for abnormal event management. For example, big 
data (i.e., data size of around 50 TB) analytics have been utilized for 
production analysis and early warning for fluidized catalytic cracking 
units and reformers. Not only can big data analytics find new root 
causes, but they can also predict an alarm in advance.

Some experts claim that Sinopec has formulated a so-called “ver-
sion 1.0 of smart manufacturing.” However, as described above, the 
activities at Sinopec simply collect and integrate existing commer-
cial optimization and simulation software, and include few new sci-
entific methods or tools. In addition, no evaluation criteria exist that 
can be used to assess what smart manufacturing actually is. In other 
words, once true smart manufacturing has been implemented, it 
will fundamentally change the ways in which products are invented, 
manufactured, shipped, and sold. To some extent, there is still a very 

Fig. 1. Key features of smart manufacturing for the oil refining and petrochemical industries. QSAR: quantitative structure-activity relationship.

Fig. 2. The integrated optimization platform at Sinopec Jiujiang Company.
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an optimization model that is subject to a complex first-principle 
model. One possible solution is to use a data-driven surrogate model 
to replace the original first-principle model. Neural network, krig-
ing, principle component analysis, supported vector machine, math-
ematical programming, and other statistical methods have been 
widely employed to generate surrogate models for fault detection, 
process control, and optimization [6,7]. When generating a surro-
gate model, we must identify where the surrogate model will be 
used and implemented—that is, whether it will be used for trends 
prediction or for flowsheet optimization. If the surrogate model is 
to be used for flowsheet optimization, a neural network-driven sur-
rogate model may lead to considerable computational barriers and 
will not be able to obtain high-accuracy solutions. No matter which 
method is utilized to generate the surrogate model, external ductili-
ty is of paramount importance. Here, the first question is how many 
datasets are sufficient to build a surrogate model with high accura-
cy;	and	the	second	question	is	how	an	adjustable	date-driven	model	
can be generated. Accuracy should be validated by industrial data-
sets. When datasets are obtained from real industrial plants, data 
reconciliation and gross error detection [8] should be employed.

3.3. Abnormal situation management

It is notable that the focus of smart manufacturing should not only  
be on the maximization of economic competitiveness, but also on 
the reduction of safety incidents. Therefore, safety risk intelligence 
should be an essential feature in smart process manufacturing [9]. 
In other words, risk assessment should be the first critical step in 
abnormal situation management (ASM) in order to obtain a prelim-
inary profile of the risk scenarios to be managed. In the context of 
big data, alarm management, process monitoring, equipment fault 
diagnosis, and human behavior monitoring should be effectively 
integrated in order to achieve a reliable and scalable ASM platform. 
For example, Fig. 3 demonstrates a framework of fault detection 

long way to go to achieve genuine smart process manufacturing, giv-
en that its six representative topics include integration, automation, 
networking, modeling, digitalization, and visualization. We must be 
seriously aware of the opportunities, difficulties, and challenges that 
lie ahead.

3. Opportunities and challenges

3.1. Operational agility

One of the key attributes of smart process manufacturing is op-
erational agility—that is, a fast response to new situations caused by 
variations in feedstock, market demand, and price. Clearly, such per-
turbations will significantly affect plant performance. Thus, switch-
es in operational strategies (i.e., process flowsheet reconstruction and 
temperature/flowrate/pressure transitions) are extremely necessary. 
Here, the first challenge is how the correct set points can be quickly 
obtained for the lowest-level control systems. From an industrial per-
spective, experts’ heuristic knowledge and operational knowledge are 
the best choice, although existing knowledge is unlikely to be able to 
cover all possible operation cases. The second challenge is the accura-
cy of the knowledge-driven approach. Recently, Zhang and Chen pro-
posed a fuzzy matching strategy to enhance the operational agility of 
an industrial catalytic cracking unit (unpublished data). From an ac-
ademic perspective, model-based real-time optimization is the main 
approach [5]. Here, the first question is where we can obtain reliable 
first-principle models for chemical processing units, especially for 
complex	reactors;	the	second	question	is	how	we	can	efficiently	solve	
the	real-time	optimization	model;	and	the	third	question	is	whether	
the industry will trust and adopt the optimization results.

3.2. Adjustable data-driven model building

In the previous subsection, we mentioned the barriers to solving 

Fig. 3. Framework	of	fault	detection	and	diagnosis	with	big	data	in	a	cloud-computing	environment.	HAZOP:	hazard	and	operation;	CBR:	case-based	reasoning;	DAIS:	dynamic	
artificial	immune	system;		Ab-lib:	antibody	library;	FDD:	fault	detection	and	diagnosis.
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and diagnosis with big data in a cloud-computing environment that 
tackles the following challenges [10]:

•	How	can	the	faults	to	be	diagnosed	in	any	given	chemical	pro-
cess be identified?

•	How	can	all	of	the	faults	in	a	chemical	process	that	require	di-
agnosis be defined?

•	How	many	features	does	each	fault	possess?
•	Can	a	fault	be	diagnosed	in	a	new	chemical	process	if	fault	data	

samples do not exist?
Regarding the big data, how large and/or diverse should the data-

set be that is available for use? Even if a clear answer to this ques-
tion is found, how can the big data be effectively compressed and 
stored? Thus, when using big data for smart process manufacturing, 
knowledge of both computer science and chemical engineering are 
extremely necessary.

3.4. Planning and scheduling for an entire oil refinery or 
petrochemical plant 

Optimal planning and scheduling of various operations in an oil 
refinery or petrochemical plant via mathematical modeling and 
global optimization provide considerable opportunities for saving 
costs, increasing profit margins, and improving energy efficiency 
and demand satisfaction. To the best of our knowledge, the capacity 
to complete the planning and scheduling of an entire oil refinery 
or petrochemical plant—a key feature of smart manufacturing—has 
been limited until now [11]. The full set of operations generally con-
tains three components: crude oil blending and processing, process-
ing unit operations, and product blending and distribution [12]. The 
consequent question is how to formulate a reliable mixed-integer 
(non) linear programming (MI(N)LP) model. It is difficult to imagine 
the scale of an optimization model for the planning and scheduling 
of an entire oil refinery or petrochemical plant. If the complex equa-
tions that represent certain reaction units are directly inserted into 
the MI(N)LP model, it is known that the optimization model will be 
intractable. The first challenge is how to set up simple but suitable 
models to represent the operation conditions, feedstock properties, 
and	yields	of	main	products;	and	the	second	challenge	is	how	to	
solve the resulting very large-scale MINLP model. To address the 
first challenge, an adjustable data-driven model can be considered if 
reliable input-output datasets for the real operation can be obtained. 
To address the second challenge, decomposition coordination ap-
pears to be the preliminary tool, although agent-based algorithms 
should also be tested.

4. Conclusions

This paper outlined the main opportunities and challenges re-
garding smart manufacturing for an oil refinery or petrochemical 

plant by demonstrating the progress in so-called “smart manufac-
turing” at Sinopec. Although considerable progress has been made, 
there is still a long way to go to achieve true smart process manufac-
turing. PSE is expected to take a central role in guiding, and perhaps 
shortening, the new journey toward smart process manufacturing. 
From an academic perspective, it is best for the industry to pro-
vide	the	test	beds;	while	from	an	industrial	perspective,	 it	 is	best	
for academia to offer a reliable and scalable platform that includes 
hardware and software to update the instrument technology level.  
In fact, these two aspects complement each other. An industry- 
university research coalition is urgently needed for the future.
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