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Smart manufacturing will transform the oil refining and petrochemical sector into a connected, information-
driven environment. Using real-time and high-value support systems, smart manufacturing enables a coor-
dinated and performance-oriented manufacturing enterprise that responds quickly to customer demands
and minimizes energy and material usage, while radically improving sustainability, productivity, innovation,
and economic competitiveness. In this paper, several examples of the application of so-called “smart manu-
facturing” for the petrochemical sector are demonstrated, such as the fault detection of a catalytic cracking
unit driven by big data, advanced optimization for the planning and scheduling of oil refinery sites, and
more. Key scientific factors and challenges for the further smart manufacturing of chemical and petrochem-
ical processes are identified.
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1. Introduction

Advanced or smart manufacturing has recently been gaining
increasing attention from the academia and industry in major
economies. For example, Germany’s Industry 4.0, which integrates
resources, information, materials, and people to formulate a cyber-
physical system, has been the priority of many enterprises, espe-
cially those that are small and medium-sized. In the United States,
the Smart Manufacturing Leadership Coalition (SMLC), which has
its headquarters in Los Angeles, California, leads the new Smart
Manufacturing Innovation Institute, in partnership with the US De-
partment of Energy [1]. Aiming to spur advances in smart sensors
and digital process controls, which can radically enhance the effi-
ciency of advanced manufacturing in the United States, the SMLC
brings together a public-private consortium of nearly 200 partners
from the academic, industrial, and non-profit arenas, and brings
in over 140 million USD from these members. Unlike the United
States and Germany, which have developed industries, China is in
its developing stage. Many of the control/management systems and
engineers in China are still stuck at the level of Industry 2.0. There-
fore, in order to address China’s national conditions and the gap be-
tween national and developed economics, the Chinese government
launched a strategy called Made in China 2025 in 2015 [2]. Smart
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manufacturing is regarded as the central element in the Made in
China 2025 strategy. Both Industry 4.0 and smart manufacturing focus
on transforming the industrial sector into a connected, information-
driven environment, in which production systems and supply
networks can be optimized via real-time and customer-oriented
internal vertical integration within smart factories, horizontal inte-
gration within upstream and downstream enterprises, and end-to-
end integration from the supply chain to the customers.

Process systems engineering (PSE), which has played an essential
role in facilitating advanced chemical processing and production
since the 1960s [3], will play a key role in achieving smart manufac-
turing in oil refineries and petrochemical plants by encompassing
the following advances in the processing unit, the plant, the enter-
prise, and the supply chain:

» Advanced sensing and instrumentation;

* Real-time flowsheet optimization and control under uncertainty;

» Green molecular design for high-value-added products;

* Adjustable big data analytics for process optimization, monitor-

ing, and management;

 Advanced hardware and software platforms; and

* Predictive modeling and simulation technologies.

It should be noted that Fig. 1 merely highlights the key features
of smart manufacturing from the perspectives of PSE, rather than
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providing the framework of smart manufacturing. To our knowl-
edge, smart manufacturing should combine information, technology
(beyond PSE technologies), and human ingenuity in order to bring
about a rapid revolution in the development and application of
manufacturing intelligence, and to improve agility, flexibility, pro-
ductivity, and quality. This paper briefly outlines examples of the
application of so-called “smart manufacturing” at the China Petrole-
um and Chemical Corporation (Sinopec).

2. Brief overview of smart manufacturing at Sinopec

In China, Sinopec is a pioneer in the launching of smart process
manufacturing. With the goal of smart manufacturing, Sinopec has
established four demonstration projects since 2012: smart petro-
chemical pilot units (including Jiujiang, Zhenhai, Maoming, and
Yanshan), an integrated business-management platform, an informa-
tion technology shared-service center, and a mobile application [4].
Through almost four years of construction, great changes have taken
place in the selected four smart pilots in terms of automation, digital-
ization, and visualization. For example, advanced control is now avail-
able for over 90% of all processes in these four pilots and productivity
has improved by more than 10%. Production optimization has been
shifted from off-line optimization to on-line integrated optimization.

Fig. 2 illustrates a general integrated optimization platform cur-
rently running at Sinopec Jiujiang Company. Based on existing com-
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mercial software such as a manufacturing excution system (MES),
enterprise resource planning (ERP), and a laboratory information
management system (LIMS), flowsheet optimization, planning,
and scheduling are integrated. At Maoming and Yanshan, integrated
real-time optimization and advanced process control have achieved
profit-oriented closed-loop optimal running for ethylene production.
Due to obvious improvements in the yields of ethylene and propyl-
ene, the overall incomes for Yanshan and Maoming have improved by
25.12 million and 41.94 million CNY per year, respectively. In addition
to the implementation of an integrated optimization framework and
platform, big data analytic technologies and tools have been studied
and implemented for abnormal event management. For example, big
data (i.e., data size of around 50 TB) analytics have been utilized for
production analysis and early warning for fluidized catalytic cracking
units and reformers. Not only can big data analytics find new root
causes, but they can also predict an alarm in advance.

Some experts claim that Sinopec has formulated a so-called “ver-
sion 1.0 of smart manufacturing.” However, as described above, the
activities at Sinopec simply collect and integrate existing commer-
cial optimization and simulation software, and include few new sci-
entific methods or tools. In addition, no evaluation criteria exist that
can be used to assess what smart manufacturing actually is. In other
words, once true smart manufacturing has been implemented, it
will fundamentally change the ways in which products are invented,
manufactured, shipped, and sold. To some extent, there is still a very
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Fig. 1. Key features of smart manufacturing for the oil refining and petrochemical industries. QSAR: quantitative structure-activity relationship.
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Fig. 2. The integrated optimization platform at Sinopec Jiujiang Company.



Z. Yuan et al. /Engineering 3 (2017) 179-182

long way to go to achieve genuine smart process manufacturing, giv-
en that its six representative topics include integration, automation,
networking, modeling, digitalization, and visualization. We must be
seriously aware of the opportunities, difficulties, and challenges that
lie ahead.

3. Opportunities and challenges
3.1. Operational agility

One of the key attributes of smart process manufacturing is op-
erational agility—that is, a fast response to new situations caused by
variations in feedstock, market demand, and price. Clearly, such per-
turbations will significantly affect plant performance. Thus, switch-
es in operational strategies (i.e., process flowsheet reconstruction and
temperature/flowrate/pressure transitions) are extremely necessary.
Here, the first challenge is how the correct set points can be quickly
obtained for the lowest-level control systems. From an industrial per-
spective, experts’ heuristic knowledge and operational knowledge are
the best choice, although existing knowledge is unlikely to be able to
cover all possible operation cases. The second challenge is the accura-
cy of the knowledge-driven approach. Recently, Zhang and Chen pro-
posed a fuzzy matching strategy to enhance the operational agility of
an industrial catalytic cracking unit (unpublished data). From an ac-
ademic perspective, model-based real-time optimization is the main
approach [5]. Here, the first question is where we can obtain reliable
first-principle models for chemical processing units, especially for
complex reactors; the second question is how we can efficiently solve
the real-time optimization model; and the third question is whether
the industry will trust and adopt the optimization results.

3.2. Adjustable data-driven model building

In the previous subsection, we mentioned the barriers to solving
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an optimization model that is subject to a complex first-principle
model. One possible solution is to use a data-driven surrogate model
to replace the original first-principle model. Neural network, krig-
ing, principle component analysis, supported vector machine, math-
ematical programming, and other statistical methods have been
widely employed to generate surrogate models for fault detection,
process control, and optimization [6,7]. When generating a surro-
gate model, we must identify where the surrogate model will be
used and implemented—that is, whether it will be used for trends
prediction or for flowsheet optimization. If the surrogate model is
to be used for flowsheet optimization, a neural network-driven sur-
rogate model may lead to considerable computational barriers and
will not be able to obtain high-accuracy solutions. No matter which
method is utilized to generate the surrogate model, external ductili-
ty is of paramount importance. Here, the first question is how many
datasets are sufficient to build a surrogate model with high accura-
cy; and the second question is how an adjustable date-driven model
can be generated. Accuracy should be validated by industrial data-
sets. When datasets are obtained from real industrial plants, data
reconciliation and gross error detection [8] should be employed.

3.3. Abnormal situation management

It is notable that the focus of smart manufacturing should not only
be on the maximization of economic competitiveness, but also on
the reduction of safety incidents. Therefore, safety risk intelligence
should be an essential feature in smart process manufacturing [9].
In other words, risk assessment should be the first critical step in
abnormal situation management (ASM) in order to obtain a prelim-
inary profile of the risk scenarios to be managed. In the context of
big data, alarm management, process monitoring, equipment fault
diagnosis, and human behavior monitoring should be effectively
integrated in order to achieve a reliable and scalable ASM platform.
For example, Fig. 3 demonstrates a framework of fault detection
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Fig. 3. Framework of fault detection and diagnosis with big data in a cloud-computing environment. HAZOP: hazard and operation; CBR: case-based reasoning; DAIS: dynamic
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and diagnosis with big data in a cloud-computing environment that
tackles the following challenges [10]:

* How can the faults to be diagnosed in any given chemical pro-

cess be identified?

* How can all of the faults in a chemical process that require di-

agnosis be defined?

» How many features does each fault possess?

* Can a fault be diagnosed in a new chemical process if fault data

samples do not exist?

Regarding the big data, how large and/or diverse should the data-
set be that is available for use? Even if a clear answer to this ques-
tion is found, how can the big data be effectively compressed and
stored? Thus, when using big data for smart process manufacturing,
knowledge of both computer science and chemical engineering are
extremely necessary.

3.4. Planning and scheduling for an entire oil refinery or
petrochemical plant

Optimal planning and scheduling of various operations in an oil
refinery or petrochemical plant via mathematical modeling and
global optimization provide considerable opportunities for saving
costs, increasing profit margins, and improving energy efficiency
and demand satisfaction. To the best of our knowledge, the capacity
to complete the planning and scheduling of an entire oil refinery
or petrochemical plant—a key feature of smart manufacturing—has
been limited until now [11]. The full set of operations generally con-
tains three components: crude oil blending and processing, process-
ing unit operations, and product blending and distribution [12]. The
consequent question is how to formulate a reliable mixed-integer
(non) linear programming (MI(N)LP) model. It is difficult to imagine
the scale of an optimization model for the planning and scheduling
of an entire oil refinery or petrochemical plant. If the complex equa-
tions that represent certain reaction units are directly inserted into
the MI(N)LP model, it is known that the optimization model will be
intractable. The first challenge is how to set up simple but suitable
models to represent the operation conditions, feedstock properties,
and yields of main products; and the second challenge is how to
solve the resulting very large-scale MINLP model. To address the
first challenge, an adjustable data-driven model can be considered if
reliable input-output datasets for the real operation can be obtained.
To address the second challenge, decomposition coordination ap-
pears to be the preliminary tool, although agent-based algorithms
should also be tested.

4. Conclusions

This paper outlined the main opportunities and challenges re-
garding smart manufacturing for an oil refinery or petrochemical

plant by demonstrating the progress in so-called “smart manufac-
turing” at Sinopec. Although considerable progress has been made,
there is still a long way to go to achieve true smart process manufac-
turing. PSE is expected to take a central role in guiding, and perhaps
shortening, the new journey toward smart process manufacturing.
From an academic perspective, it is best for the industry to pro-
vide the test beds; while from an industrial perspective, it is best
for academia to offer a reliable and scalable platform that includes
hardware and software to update the instrument technology level.
In fact, these two aspects complement each other. An industry-
university research coalition is urgently needed for the future.
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