
Engineering 5 (2019) 586–593
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Drop-on-Demand Printing—Article
Multi-Objective Optimization Design through Machine Learning for
Drop-on-Demand Bioprinting
https://doi.org/10.1016/j.eng.2018.12.009
2095-8099/� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: mpelwf@nus.edu.sg (W.F. Lu).
Jia Shi a,b, Jinchun Song a, Bin Song c, Wen F. Lu b,⇑
a School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
bDepartment of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore
c Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore
a r t i c l e i n f o

Article history:
Received 8 September 2018
Revised 1 December 2018
Accepted 25 December 2018
Available online 23 March 2019

Keywords:
Drop-on-demand printing
Inkjet printing
Gradient descent multi-objective
optimization
Fully connected neural networks
a b s t r a c t

Drop-on-demand (DOD) bioprinting has been widely used in tissue engineering due to its high-
throughput efficiency and cost effectiveness. However, this type of bioprinting involves challenges such
as satellite generation, too-large droplet generation, and too-low droplet speed. These challenges reduce
the stability and precision of DOD printing, disorder cell arrays, and hence generate further structural
errors. In this paper, a multi-objective optimization (MOO) design method for DOD printing parameters
through fully connected neural networks (FCNNs) is proposed in order to solve these challenges. The
MOO problem comprises two objective functions: to develop the satellite formation model with
FCNNs; and to decrease droplet diameter and increase droplet speed. A hybrid multi-subgradient descent
bundle method with an adaptive learning rate algorithm (HMSGDBA), which combines the multi-
subgradient descent bundle (MSGDB) method with Adam algorithm, is introduced in order to search
for the Pareto-optimal set for the MOO problem. The superiority of HMSGDBA is demonstrated through
comparative studies with the MSGDB method. The experimental results show that a single droplet can be
printed stably and the droplet speed can be increased from 0.88 to 2.08 m�s�1 after optimization with the
proposed method. The proposed method can improve both printing precision and stability, and is useful
in realizing precise cell arrays and complex biological functions. Furthermore, it can be used to obtain
guidelines for the setup of cell-printing experimental platforms.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Inkjet printing is a cost-effective, fast, and versatile additive
manufacturing technique. It is classified into continuous inkjet
(CIJ) printing and drop-on-demand (DOD) printing, where DOD
printing has wide applications in sensors [1], solar cells [2],
memory devices [3], radio frequency devices [4], complex circuits
[5], and tissue engineering [6,7]. DOD printing is popular because
of its high accuracy, precision, and controllability for printing
droplets. For example, it can be used in tissue engineering to place
cells and biomaterials in specific target locations in order to
achieve the necessary spatial resolution. Nevertheless, several
adverse phenomena, including droplet satellites, large droplets,
and slow droplet speed, can reduce printing precision, pattern
quality, controllability, and stability, hence restricting extensive
application of inkjet printing [8].

During DOD bioprinting, there are three droplet statuses: no
droplet, only primary droplet, and primary droplet with satellites
[9,10]. ‘‘Only primary droplet” printing is the ideal printing result
that can deposit cells in specific positions. Satellites are typically
small droplets that are generated with the formation of the pri-
mary droplet. Satellite formation is mainly due to excessive droplet
deformation caused by the Rayleigh instability [10]. Once the Ber-
noulli pressure generated by the speed is larger than the capillary
force (generated by the surface tension) and viscous force, satel-
lites are generated and decrease the printing precision and pattern
quality.

Since DOD printing is usually used in micro-printing processes,
droplet diameter is an important index for printing precision.
Furthermore, very low droplet speed may cause the breakup of
the droplet near the nozzle and generate a wet perimeter around
the orifice of the nozzle. In bioprinting, cells in residual liquid
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may adhere to the orifice of the nozzle, causing non-ideal wetting
[11]. This phenomenon suppresses droplet formation and causes a
non-straight flying trajectory, decreasing printing stability.

Droplet types, diameters, and speeds are influenced by printing
parameters, such as the voltages applied in piezoelectric DOD print-
ing, ink properties, and structure of theDODprint-head. It is difficult
to describe the relationship between droplet features and printing
parameters using a single physical model. Many researchers have
focused on models that feature only one droplet with printing
parameters for DOD printing. The main method is to study the gen-
eration and eliminationmodels of satellites. Kim and Baek [12] have
discussed the printability parameter range to produce a primary
droplet without satellites using computational fluid dynamics
(CFD) simulations. Dong et al. [9] have proposed a criterion for the
maximal critical breakup length to avoid satellites. Poozesh et al.
[13] have proposed a mechanism to generate various droplet sizes
with no change in nozzle diameter, while satellites were generated.

Only a few studies have discussed a model that includes all of
the above droplet features in order to optimize the DOD printing
parameters, because these droplet features conflict with each
other. For example, increasing droplet speed can enhance printing
stability, but generates satellites. Reducing satellites or droplet
diameter can improve printing precision, but may decrease droplet
speed and printing stability. Thus, there is a need to find as good a
solution as possible to balance these different goals through a
multi-objective optimization (MOO) method.

Since no clear function model has been studied between droplet
features and printing parameters, machine learning is herein pro-
posed to map out this nonlinear and complex model. Machine
learning has been proven to be effective in both classification
and regression in many engineering fields [14–16]. Dos Santos
et al. [17] used fully connected neural networks (FCNNs), a class
of machine learning method, to build a model of the relation
between printing parameters and droplet speed in pulsed gas
metal arc welding. That work suggests that FCNNs work well in
searching for a data relationship.

Many MOO methods have been proposed in the past, such as
evolutionary methods [18,19] and descent methods [20]. Evolu-
tionary methods use an evolutionary algorithm (EA), which is a
generic population-based metaheuristic optimization algorithm.
Candidate solutions to the optimization problem play the role of
individuals in a population, and the fitness function determines
the quality of the solutions. Descent methods use a gradient
descent algorithm, which is a first-order iterative optimization
algorithm. To find the local minimum of a function using gradient
Fig. 1. Schematic diagram o
descent, steps are taken proportional to the negative of the gradi-
ent (or approximate gradient) of the function at the current point.
FCNNs have more complex function structures than common func-
tions because they may have several hidden layers. Optimizing
FCNNs with EAs may not achieve a Pareto-efficient set, since there
are no common convergence criteria. Instead, descent methods
rely on rigorous convergence theorems and can achieve calculation
stability.

To solve the problems of low printing precision and stability
caused by satellites and a slow printing speed, we propose an effi-
cient MOO design method for optimizing piezoelectric DOD print-
ing parameters. Fig. 1 shows a schematic diagram of the proposed
method. Both single-objective optimization (SOO) and MOO prob-
lems are built to optimize the DOD printing parameters, and FCNNs
are used to identify the relationship between satellite formation
and printing parameters. The simulation model in our previous
work is used to collect datasets for the FCNNs due to its conve-
nience and accuracy [21]. The SOO problem, which is solved by
the Adam algorithm, simulates the case of reducing satellite forma-
tion with the use of a fixed print-head and bio-ink. The MOO prob-
lem simulates the case of building an experimental platform for
optimal printing. A hybrid multi-subgradient descent bundle
method with an adaptive learning rate algorithm (HMSGDBA) is
proposed, which combines the multiple subgradient descent bun-
dle (MSGDB) method with the Adam algorithm to solve the MOO
problem. Our experiments verify that a single droplet with a smal-
ler droplet diameter can be printed and a faster speed can be real-
ized using the proposed method, thus improving the printing
precision and stability.
2. Methodology

This section firstly presents a brief description of DOD printing
and satellite formation, then discusses the FCNNs model of satel-
lites formation and the optimal design problem of DOD printing
parameters as well as the algorithms used in this paper, and finally
introduces our experimental setup.
2.1. Models of piezoelectric DOD printing and satellite formation

In this section we address models of piezoelectric DOD printing,
which combines inverse piezoelectric effect and compressible fluid
theory, and the satellite formation defined according to the degree
of droplet deformation.
f the proposed method.
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2.1.1. Models of piezoelectric DOD printing
In piezoelectric DOD printing, a transient mechanical pulse is

applied to the fluid in the print-head by a piezoelectric actuator
based on the inverse piezoelectric effect. This causes the bio-ink
to be extruded through the nozzle, producing droplets as shown
in Fig. 2. At each pulse cycle, a voltage is applied to the piezoelec-
tric ceramic tube of the print-head to deform the tube wall. The
deformation causes transient changes in the internal fluid volume
in order to generate a pressure to produce droplets, according to
the compressible fluid theory. The inverse piezoelectric effect,
which includes compressible fluid theory, is expressed as follows:

e ¼ d33U ð1Þ

DV
V

¼ e
r

ð2Þ

Dp ¼ �K
DV
V

ð3Þ

where e is the deformation displacement of the tube along the thick-
ness direction (m); d33 is the piezoelectric strain constant of PZT-5H,
the piezoelectric ceramics based on BaTiO3, 593 � 10�12 m�V�1;
U is the applied voltage (V); ΔV is the change of fluid volume (m3);
V is initial volume of fluid (m3); Δp is the pressure
variation (Pa); and K is the bulk modulus of elasticity of the fluid,
2.18 � 109 Pa.

The continuity equation (Eq. (4)) and the Navier–Stokes equa-
tion (Eq. (5)), along with Eqs. (1)–(3), form a complete mathemat-
ical description of piezoelectric DOD printing and droplet
formation:

@q
@t

þr � quð Þ ¼ 0 ð4Þ

@

@t
quð Þ þ r � quuð Þ ¼ �rpþr � l ruþruT� �� �þ f r ð5Þ

where q is the density of fluid (kg�m�3), u is the velocity (m�s�1), l
is the viscosity of fluid (kg�m�1�s�1), and f r is the surface tension
force (N).

The surface tension force f r in Eq. (5) is expressed based on the
continuum surface force model as follows [22]:

f ri ¼ �r
�qr aj

ajj jrai

1
2

qi þ qj

� � ð6Þ

where r is the surface tension of bio-ink (N�m�1), �q is the
volume-averaged density (kg�m�3), qi is the density of the current
Fig. 2. Schematic of the piezoelectric DOD print-head.
calculated phase in fluid (kg�m�3), qj is the density of the other
phase in the fluid (kg�m�3), ai is the volume of the current calcu-
lated phase in the fluid, and aj is the volume of the other phase in
the fluid.

�q is calculated with the volume-of-fluid model as follows [23]:

�q ¼ 1� qið Þqj þ aiqi ð7Þ
2.1.2. Models of satellite formation
Taylor [24] proposed the use of a dimensionless number D in

Eq. (8) to define the degree of droplet deformation:

D ¼ Ca
19bþ 16
16bþ 16

ð8Þ

where D is the dimensionless number of droplet deformation, Ca is
the capillary number, b and is the ratio of droplet viscosity to air
viscosity.

Ca is expressed as follows:

Ca ¼ llRdc
r

ð9Þ

where ll is the viscosity of bio-ink (m�s�1), Rd is the radius of
droplet (m), and c is the shear rate of the cell-laden bio-ink (s�1).

D is selected as the evaluation index of the droplet status. The
relation between droplet status y and D is expressed as follows:

y ¼
No droplet; D ¼ 0
Primary droplet; s � D � l

Satellites; D > l

8><
>: ð10Þ

where s and l are the lower and upper boundary of D, respectively.
According to the mathematical model of DOD printing, the val-

ues of the Bernoulli pressure, capillary pressure, viscosity pressure,
and unsteady pressure are determined by the applied voltage U,
viscosity ll and surface tension r of the bio-ink, and nozzle diam-
eter of the print-head Dn. Droplet deformation is expressed as a
function of the printing parameters as follows:

D ¼ f U;ll;r;Dn
� � ð11Þ

CFD simulations can simulate the piezoelectric DOD printing
process as well as satellite formation [21], thus helping researchers
to comprehend the working principles of DOD printing. However,
this method cannot obtain a precise mathematical model of Eq.
(11) because of its complexity. Thus, we select the FCNN method
to fit this function, and use CFD simulations to collect training
datasets (Fig. 1).

2.2. Optimization design of DOD printing parameters

An optimization design of the DOD printing parameters can
improve the printing performance and allow high precision and
high stability. FCNNs are first developed to build a model of satel-
lite formation; next, the optimization design is conducted in two
cases, as shown in Fig. 1. The first case is an SOO of the applied
voltage with the specific DOD print-head and bio-ink. The second
case is an MOO design of all the printing parameters to obtain
the optimal printing result.

2.2.1. FCNN model of satellite formation
FCNNs have three types of layers (Fig. 3): the input layer, hidden

layers, and the output layer. The parameters to be analyzed consti-
tute the input layer, and the fitted result is exported by the output
layer. The middle hidden layers establish the nonlinear model of
satellite formation, and can be one or many in number. The differ-
ent layers are connected by weights and biases.



Fig. 3. Schematic diagram of FCNNs.

Table 2
Structures of the designed FCNNs and test results.

FCNN Parameters MAE RMSE

Nodes lr
a Epochs

1 5; 1 0.005 20 000 10.9% 13.9%
2 9; 2 0.008 30 000 9.9% 13.4%
3 2; 2; 2 0.012 20 000 9.4% 10.9%

a lr represents the learning rate used in the Adam algorithm to train FCNNs.
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Since the function in Eq. (11) is piecewise continuous, the hid-
den layers in the FCNNs should be set as either a minimum of two
layers comprising smooth activation functions, or one layer com-
prising both smooth and nonsmooth activation functions, in order
to obtain satisfactory fitting results [25,26]. Here, the nonsmooth
activation function is selected as the ReLU activation function,
defined as rectified linear units, because of its sparse activation,
which is beneficial in fitting the first part of the function
D ¼ f U;ll;r;Dn

� �
—that is, D = 0, corresponding to the ‘‘no droplet”

status. Three structures of hidden layers were designed to achieve
the best fitting accuracy. The first is composed of one hidden layer
with two activation functions—that is, the sigmoid and ReLU acti-
vation functions, where the ReLU activation function is nonsmooth.
The second comprises two hidden layers with one activation func-
tion each—that is, the ReLU and tanh activation functions. The last
includes two hidden layers with three activation functions, where
the first hidden layer combines the sigmoid and ReLU activation
functions, and the second layer is comprised of the tanh activation
function. The activation functions are expressed in Eq. (12):
Sigmoid : f ðxÞ ¼ 1=ð1þ e�xÞ

ReLU : f ðxÞ ¼ x; if x � 0
0; if x < 0

�

Tanh : f ðxÞ ¼ ð1� e�2xÞ=ð1þ e�2xÞ

ð12Þ

The results of the CFD simulations were obtained as datasets for
the FCNNs [21]. A total of 120 results were obtained, of which 87
were used as training sets and 33 as test sets. In the inputs of
the datasets, the range of voltage was 15–54 V; the range of viscos-
ity was 1.07–10 cP (1 cP = 10�3 Pa�s); the range of surface tension
was 40–72.19 mN�m�1; and the range of the nozzle diameter was
25–120 lm. The ranges of the voltage and viscosity were set
according to the working scope of our DOD print-head, the range
of the surface tension was set based on the common cell concen-
trations of bio-inks [11], and the range of the nozzle diameter
was set larger than the diameter of the cells commonly used for
bioprinting. Each input set was selected to train the FCNNs by suf-
ficient different droplet statuses. As listed in Table 1, the values of
D were around 10�8–10�7 with the prepared bio-inks described in
Section 2.4. The outputs of the datasets were set as values of D
magnified 106 times in order to improve the fitting accuracy.
The Adam algorithm introduced in Section 2.3 was used to train
the FCNNs. Three optimal FCNNs were obtained by optimizing
Table 1
Values of D to print primary droplet in experiments.

Boundary Bio-ink

A B C

s 2.39 � 10�8 2.13 � 10�8 2.03 � 10�8

l 5.88 � 10�8 5.86 � 10�8 4.80 � 10�8
the parameters of the FCNNs, including the numbers of hidden
nodes, learning rate, and training epochs. Their structures and
the test results are listed in Table 2. The third FCNN had the best
test accuracy, with a least mean absolute error (MAE) of 9.4% and
a least root mean squared error (RMSE) of 10.9%. This FCNN was
set as the model of satellite formation in Eq. (11).

2.2.2. Single-objective optimization design of voltages
In the first case, both the piezoelectric DOD print-head and the

bio-ink are specified. The applied voltage is the only parameter to
be adjusted, in order to reduce satellite formation. The design of
theDODprintingparameters is treated as a SOOproblem, as follows:

Objective : min1
2

f Uð Þ � c1c2D0½ �2

Subject to : U 2 15;54½ �
ð13Þ

where D0 is the specific value of D that refers to the condition of
printing a primary droplet without satellites ; c1 and c2 are the cor-
rection coefficients, c1 = 0.89 and c2 = 0.90. The Adam algorithm is
used to solve this optimization problem.

D0 is determined through experiments according to the bound-
ary of D (Table 1)—that is, s and l in Eq. (10). The experimental
setup and the three cell-laden bio-inks used in the experiments
are described in Section 2.4. The boundaries of D are listed in
Table 1, which lists the maximum of s, named smax, as
2.39 � 10�8 and the minimum of l, named lmin, as 4.80 � 10�8.
Printing only primary droplets can be guaranteed when D belongs
to [smax, lmin]. Here, D0 is set as a median value between smax and
lmin—that is, 3.3 � 10�8—as the objective value of D.

Two correction coefficients, c1 and c2, are set to reduce the error
among the experiments, FCNNs, and simulation results. Simulation
errors in the droplet radius and droplet speed are almost 7% and
4%, respectively [21], and c1 is thus set as 0.89. The FCNN error is
9.4% and c2 is set as 0.90.

2.2.3. Multi-objective design optimization of DOD printing parameters
In the second case, the setup of a bioprinting experimental plat-

form requires suitable and cost-effective DOD print-heads and bio-
inks. Thus, all the printing parameters require optimization. The
platform is expected to satisfy several requirements in addition
to satellite reduction, such as high printing precision and a robust
and easy printing process. These requirements can be realized by
decreasing the diameter of the nozzle, increasing the printing
speed by amplifying the applied voltage, and selecting a bio-ink
with low viscosity and low surface tension. However, these
demands conflict with the demand of reducing satellite formation
[9]. Under this condition, the design of the DOD printing parame-
ters is considered to be an MOO problem, as follows:

Objective : f 1 ¼ min 0:1� l0
1 þ r0 þ D0

n � U0� �� �
f 2 ¼ min 1

2
f U;ll;r;Dn
� �� c1c2D0

� �2n o
Subject to : U 2 15;54½ �

ll 2 1;10½ �
r 2 40;72:19½ �
Dn 2 25;100½ �

ð14Þ
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In the MOO model, f1 represents the goal of increasing printing
precision and stability, while f2 represents the goal of avoiding
satellite formation. The coefficient of 0.1 in f1 balances the effect
of functions f1 and f2. U

0, l0
1, r0, and D0

n normalize the parameter
according to their range as follows:

x0 ¼ x� xmax þ xminð Þ=2
xmax � xminð Þ=2 ð15Þ
2.3. Multi-objective optimization with the descent method

FCNNs are powerful models with non-convex objective func-
tions that have very complex function structures. At first, we tried
using an evolutionary MOO algorithm called the multi-objective
particle swarm optimization (MOPSO) [27] to optimize Eq. (14);
however, the result was non-convergent. Even though descent-
based MOO algorithms have a slower numerical calculation speed
than many evolutionary MOO algorithms, we selected them to
solve the presented problem due to their rigorous convergence
theorems. The HMSGDBA is hence proposed, which combines the
MSGDB method with the Adam algorithm, in order to solve our
MOO problem.

2.3.1. The multiple subgradient descent bundle method
The MSGDB method is a gradient descent-based method for

convex nonsmooth MOO problems [28]. It uses the proximal bun-
dle approach first to find descent directions for each objective
function, considering the nonsmoothness features. A convex hull
of these descent directions is formed, and the minimum norm ele-
ment is then calculated as a candidate of the common descent
direction for all objective functions. If a common descent direction
is not found, the union of subdifferentials of the objectives is
approximated instead of the above descent directions. This method
can at least converge to a weak Pareto-optimal set. The steps of the
MSGDB method are as follows:

(1) Initialization: Randomly select the starting point x1; set the
stopping parameter em > 0.

(2) Find the direction dii for all numbers of the objective junc-
tions ii = 1, . . ., m separately with an inner iteration kk as follows:

dii;kk ¼ argmin f̂
kk

ii xkk þ diið Þ þ 1
2
d2
iijdii 2 Rn

� 	
ð16Þ

where f̂
kk

ii xð Þ is a piecewise linear model to approximate the func-
tion fii [29], set dii = dii,kk.

(3) Calculate a minimum norm element as the common descent
direction dll by solving the following:

Objective : mink Pm
ii¼1kiidii k2

Subject to :
Pm
ii¼1

kii ¼ 1

kii � 0

ð17Þ

(4) If fii(xll + dll) < fii(xll), go to step (6). Otherwise, go to step (5).
If ||dll|| < em, then stop.

(5) Use the proximal bundle method to build a set of subgradi-
ents and find another candidate of the common descent direction
[29].

(6) Update the parameters with a line-searched step size s:

xllþ1 ¼ xll þ sdll ð18Þ
2.3.2. Adaptive moment estimation
The adaptive moment estimation (i.e., Adam algorithm) is a

first-order gradient-based optimization algorithm of the stochastic
objective function, which is computationally efficient, requests
little memory, and is invariant to diagonal rescaling of the gradi-
ents [30]. It computes the individual adaptive learning rate for dif-
ferent parameters from estimates of the first and second moments
of gradients. The method has been proven to be effective and is
widely applied in training the weights matrices of deep learning
networks [31]. This study used Adam algorithm to ① optimize
the weights matrices of the designed FCNNs and ② generate
updated steps in the proposed HMSGDBA. The core steps of Adam
algorithm are summarized as follows:

(1) Initialization: f(h) is the objective function with parameters
h; h0 is the initial weights and bias matrix of the designed FCNNs;
the initialized time step is t = 0; the learning rate g = 0.012; and the
other initialized parameters are m0 = 0, v0 = 0, b1 = 0.9, b2 = 0.999,
and e = 10�8.

(2) Obtain gradients with respect to the objective function at
time step t:

gt ¼ rhf t ht�1ð Þ ð19Þ
(3) Update the biased first moment and second raw moment:

mt ¼ b1 �mt�1 þ 1� b1ð Þ � gt ð20Þ

v t ¼ b2 � v t�1 þ 1� b2ð Þ � g2
t ð21Þ

where g2
t indicates the elementwise square gt ʘ gt.

(4) Compute the bias-corrected first moment and second raw
moment:

m̂t ¼ mt= 1� bt
1

� � ð22Þ

v̂ t ¼ v t= 1� bt
2

� � ð23Þ
(5) Update the parameters:

ht ¼ ht�1 � g � m̂t=
ffiffiffiffiffi
v̂ t

p
þ e

� �
ð24Þ

(6) If the convergence conditions are satisfied, the resulting
parameters ht are returned; otherwise, go back to step (2).

2.3.3. The hybrid multi-subgradient descent bundle method with the
adaptive learning rate algorithm

The MSGDB method may be unsuitable for optimizing the
objective function of non-convex FCNNs due to the possibility of
falling into a local optimum, while Adam outperforms other meth-
ods in such cases because it performs a form of step-size annealing
and is able to jump out of the local optimum and be infinitely close
to the global optimum [30]. HMSGDBA is hence designed to com-
bine the advantages of MSGDB method and Adam algorithm in
order to ensure convergence and calculation stability. In
HMSGDBA, the common descent direction for all the objective
functions is found using MSGDB, and the inputs parameters are
updated by Adam algorithm with a learning rate of 0.001 along
the found direction. The convergence conditions are set as
||dll|| < em. Since the solution of an MOO problem with a gradient
descent algorithm is sensitive in terms of starting points, several
starting points are selected in order to obtain a Pareto-optimal set.

2.4. Experimental setup

An in-house-developed piezoelectric DOD print-head with a
nozzle diameter of 100 lm was used in this study (Fig. 4). A
high-speed camera (Mini AX200 model, Photron), assisted by a
super-bright light emitting diode (LED) (SLG-150V, REVOX Solu-
tions by Photron), was used to capture the droplet trajectory at a
frame rate of 40 000. The camera was focused on the middle plane
of the nozzle, and the droplet formation process was recorded. The
voltage pulse was applied to a piezo driver (JetDriveTM III,



Fig. 4. Experimental setup for piezoelectric DOD cell printing. 3D: three-
dimensional.
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MicroFab Technologies Inc.) to produce droplets. The piezo driver
was connected with the transducer of the print-head.

Three kinds of cell-laden bio-inks were used to test the SOO
results (Table 3) [21]. These comprised HeLa cells and Dulbecco’s
Modified Eagle Medium (DMEM), or sodium alginate (SA) dissolved
in DMEM, to obtain different viscosities. When increasing the con-
centration of SA to 1.0%, two cell concentrations, 1 � 106 and
5 � 105 mL�1, were initially used. The testing results showed that
both had almost the same viscosity, while the one with
1 � 106 mL�1 cells could not break into droplets after ejection. A
possible reason for this result is that the surface tension value of
this bio-ink decreases during the transient process of generating
droplets, which reduces the total free energy and increases the
printing difficulty [11]. Hence, cells with a concentration of
5 � 105 mL�1 were selected for the preparation of bio-ink C as listed
in Table 3 in order to ensure that the printer was working well.
Table 4
The droplet status under the initial voltages and the optimized voltages for cell-laden
bio-inks.

Bio-ink

A B C

Initial Voltage (V) 40 40 40
Droplet status Satellites Satellites No droplet

Optimized Voltage (V) 29 35 43
Droplet status Single Single Single
Time to output
after optimized (ls)

550 575 575
3. Results and discussion

Experiments were conducted to verify that the proposed
method could be used to obtain stable and precise printing results.
The optimization results introduce a guideline for the design of a
DOD print-head.

3.1. Verification of voltage optimization results

In the SOO problem, the applied voltage was optimized to print
only primary droplets with the bio-inks listed in Table 3. The initial
voltage was randomly set at 40 V. Table 4 lists the droplet status
under the initial voltages and the optimized voltages for each
bio-ink. The experimental results showed that printing bio-inks A
and B with the initial voltage generated satellites, while printing
bio-ink C with the initial voltage did not generate droplets. All of
the optimized voltages were able to generate only primary dro-
plets when printed with the corresponding bio-ink (Fig. 5), which
verified the designed FCNNs and the SOO results.
Table 3
Properties of cell-laden bio-inks.

Bio-ink DMEM SA
concentration
(w/v)

Cell
concentration
(mL�1)

Viscosity
(cP)

Surface
tension
(mN�m�1)

A Yes 0 1 � 106 1.07 72.19
B Yes 0.5% 1 � 106 5.00 71.00
C Yes 1.0% 5 � 105 10.00 70.03
Given a specific bio-ink and DOD print-head, the applied volt-
age could be designed to print only primary droplets. This method
can replace the trial-and-error process of cell printing experiments
and can thus save researchers the expense of obtaining instru-
ments for observing droplet statuses, such as high-speed cameras
and microscopes.
3.2. Optimization design of DOD printing parameters

In the MOO problem, based on the verified FCNNs, all the print-
ing parameters were optimized by solving Eq. (14). A Pareto-
optimal set was obtained using HMSGDBA and MSGDB (Fig. 6).
The results show that HMSGDBA achieves a Pareto set that is closer
to the global optimum than the results obtained using MSGDB.

According to the results for HMSGDBA shown in Fig. 6, the max-
imum error of f2 is greater than 2 � 10�3 when f1 is at the minimal
value of �0.4. The corresponding D is around 1.121 � 10�7, which
indicates that satellites will be printed. The value of f2 decreases
with an increasing value of f1. At the labeled point in the figure,
f2 is 6.12 � 10�6 and f1 is �0.14. This condition is ideal for printing
only primary droplets in a stable manner. Although increasing f1
could further decrease f2, the printing precision and stability might
worsen. The labeled point can hence be treated as a compromise
solution. Table 5 lists the initial, optimized, and adjusted values
of the printing parameters. It demonstrates that satellites can be
printed initially with D of 8.84 � 10�8. After optimization, only pri-
mary droplets are printed with a D of 3.75 � 10�8, and the printing
precision and stability are improved with a decrease in f1. Conse-
quently, the optimal set of printing parameters is 39 V, 1.37 cP,
65.91 mN�m�1 and 29 lm. According to the common properties
of the bio-ink and the nozzle diameter of the piezoelectric DOD
print-head, the printing parameters are adjusted with a D of
3.77 � 10�8. The optimized bio-ink can be prepared by adding sur-
factants to bio-ink A [32]. The small difference between the
adjusted D and the optimal D can be omitted because it has no
influence on the final printing results.
Fig. 5. Experiments printing different bio-inks with optimized voltages.



Fig. 7. Experimental validation of the proposed method. (a) Experimental results
with the initial printing parameters of U = 33 V, ll = 5 cP, and r = 71.00 mN�m�1;
(b) experimental results with the optimized printing parameters of U = 20 V,
ll = 1.07 cP, and r = 41.5 mN�m�1.
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Due to the limitation of our DOD print-head, the proposed
method was verified with a fixed nozzle diameter of 100 lm. The
initial printing condition used bio-ink B with an applied voltage
of 33 V. Even though a single droplets without satellites was
printed at first, as shown in Fig. 7(a), no droplets were generated
after several moments due to the generation of a wet perimeter
caused by a slow droplet speed of 0.88 m�s�1. Using the proposed
method, the printing parameters were optimized for applied volt-
age, viscosity, and surface tension as 20 V, 1.05 cP, and 41 mN�m�1,
respectively. The designed bio-ink was prepared by mixing 0.01%
w/v fluorosurfactant Novec FC-4430 with bio-ink A [32], and the
viscosity and the surface tension of the prepared bio-ink are
1.07 cP, and 41.5 mN�m�1. The small error of viscosity and surface
tension between the designed and prepared bio-ink was ignored.
The results showed that single droplets were printed stably with
the prepared bio-ink (Fig. 7(b)) at a printing speed of 2.08 m�s�1.
A video of the printing process shown in Fig. 7 is provided in the
Appendix A.

Considering that the DOD print-head is usually fixed, Eq. (14)
was adjusted to determine suitable properties of bio-ink for differ-
ent biological functions. The optimal value of f1 was set as �0.15
and the nozzle diameter was set as a constant for the best printing
precision stability. The new objectives are expressed as follows:

Objective : f 1 ¼min 0:1� l0
1þr0 þD0

n�U0� �þ0:15
� �2n o

f 2 ¼min 1
2
f U;l1;r;Dn
� ��c1c2D0

� �2n o
Subject to : U 2 15;54½ �

ll 2 1;10½ �
r2 40;72:19½ �

Dn �30

ð25Þ

The solutions of Eq. (25) illustrate that a satisfactory viscosity of
bio-ink is from 1.00 to 2.60 cP, surface tension is from 50.35 to
Fig. 6. Solutions obtained in objective space for the optimization design of DOD
printing parameters using HMSGDBA and MSGDB.

Table 5
Comparison of printing performance with different printing parameters.

U
(V)

ll

(cP)
r
(mN�m�1)

Dn

(lm)
f1 f2

(�10�6)
D
(�10�8)

Initial 51 6.12 72.00 59 0.19 981.20 8.84
Optimized 39 1.37 65.91 29 �0.14 6.12 3.75
Adjusted 39 1.07 66.00 30 �0.15 6.84 3.77
67.55 mN�m�1, and corresponding voltage is from 22 to 40 V. These
results imply that printing a bio-ink with high viscosity, such as a
high-concentration hydrogel, cannot yield the best printing preci-
sion with a robust printing process. The computed range for the
viscosity and surface tension of bio-ink can be treated as a refer-
ence for the preparation of bio-ink.

4. Conclusions

This paper proposed an effective multi-objective design
optimization method for optimizing piezoelectric DOD printing
parameters to print droplets with a smaller droplet diameter and
faster droplet speed, without satellites. SOO and MOO problems
were solved through FCNNs in order to optimize the DOD printing
parameters. FCNNs including two hidden layers with a nonsmooth
activation function were verified as having the best accuracy. The
experiments demonstrated that an optimized voltage for each
bio-ink, obtained by solving the SOO problem, can be used to print
single primary droplets successfully. The MOO problem was solved
by the proposed HMSGDBA, which combines MSGDB with the
Adam algorithm. The obtained approximation of the Pareto set
was closer to the global solution than the results obtained using
MSGDB. Compared with non-optimized initial printing parameters,
the optimized parameters obtained by the proposed method were
able to improve the printing precision and stability. Experiments
were conducted to validate the SOO and MOO method with a fixed
nozzle of 100 lm. The results showed that single droplets were
stably printed after optimization in the SOO problem. In the
MOO problem, the droplet speed was increased from 0.88 to
2.08 m�s�1 after optimization. Furthermore, based on the opti-
mized nozzle diameter of the DOD print-head, a range of bio-ink
properties was proposed as a reference for preparing bio-ink to
obtain the best printing precision with a robust printing process.
The suggested bio-ink viscosity is from 1.00 to 2.60 cP, the surface
tension is from 50.35 to 67.55 mN�m�1, and the corresponding
voltage is from 22 to 40 V. The proposed method improves the
printing precision and stability for precise order of cell arrays.
Optimized results can be treated as a guideline for the setup of a
piezoelectric DOD bioprinting experimental platform.
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mensionless number of droplet deformation
l
 scosity of bio-ink (m�s�1)

dius of droplet (m)

wer boundary of D

per boundary of D

pillary number, a dimensionless number

tio of droplet viscosity to air viscosity
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n
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 rrection coefficients: c1 ¼ 0:89; c2 ¼ 0:90
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2018.12.009.
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