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The randomness and complexity of urban traffic scenes make it a difficult task for self-driving cars to
detect drivable areas. Inspired by human driving behaviors, we propose a novel method of drivable area
detection for self-driving cars based on fusing pixel information from a monocular camera with spatial
information from a light detection and ranging (LIDAR) scanner. Similar to the bijection of collineation,
a new concept called co-point mapping, which is a bijection that maps points from the LIDAR scanner
to points on the edge of the image segmentation, is introduced in the proposed method. Our method posi-
tions candidate drivable areas through self-learning models based on the initial drivable areas that are
obtained by fusing obstacle information with superpixels. In addition, a fusion of four features is applied
in order to achieve a more robust performance. In particular, a feature called drivable degree (DD) is pro-
posed to characterize the drivable degree of the LIDAR points. After the initial drivable area is character-
ized by the features obtained through self-learning, a Bayesian framework is utilized to calculate the final
probability map of the drivable area. Our approach introduces no common hypothesis and requires no
training steps; yet it yields a state-of-art performance when tested on the ROAD-KITTI benchmark.
Experimental results demonstrate that the proposed method is a general and efficient approach for
detecting drivable area.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Road detection has long been considered to be a decisive com-
ponent of self-driving cars, and attracts wide research attention.
Thus far, remarkable progress has been achieved in road detection
[1–3]. However, automatic driving decisions that are based on road
detection alone may fail to deal with certain emergencies in which
the detected road becomes undrivable due to suddenly turning
vehicles or pedestrians. In fact, when driving a car, a human driver
understands scenarios by classifying obstacles versus non-
obstacles, rather than merely identifying the road. Thus, a human
driver can choose to drive on flat areas that are not normally
viewed as roads for safety reasons during an emergency. For self-
driving cars, instead of the detection of road areas, the detection
of such ‘‘flat areas” can provide a more comprehensive knowledge
for the decision-making process, allowing self-driving cars to act
more like human drivers.
Although most existing road-detection methods are already
available for well-marked roads through sample training, the prob-
lem of detecting a road surface on weakly marked roads and lanes
in urban and rural environments remains unsolved, due to the high
variability of the scene layout, illumination, and weather condi-
tions. Thus far, no reliable solution exists; therefore, a robust and
efficient method is urgently needed.

In image segmentation, the boundaries of objects generally
appear in the area of depth discontinuities. Therefore, image seg-
mentation should be fused with depth discontinuities. In projec-
tion geometry, a homograph is an isomorphism of projective
spaces; it is a bijection that maps lines to lines, in what is known
as collineation. Here, we introduce a new concept that is similar
to the bijection of a collineation: co-point mapping. Co-point map-
ping is a bijection that maps points from a laser sensor to the
points on the edges of image segmentation. The projective space
is constructed as a set of points of normal vectors over a given field.
Some co-points are not homographs owing to changes in illumina-
tion, unevenness of the road, and shadows in two-dimensional
(2D) images. In order to overcome these problems, we simply
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use the normal vector of the point cloud data instead of using the
raw point cloud data, which will be described later. In this context,
pixel-depth data fusion can be clearly described, and the homo-
graphs of pixel depth are defined as co-point mapping.

We thus propose a self-adaptive method for drivable area
detection by leveraging co-point mapping to fuse the pixel infor-
mation from a monocular camera with the spatial information
from a laser sensor, as shown in Fig. 1. By combining the image pix-
els’ coordinates with the spatial location of each laser point, a
Delaunay triangulated graph [4] is built to establish the spatial
relationship among the laser points, and the normal vectors of
the triangles are used in the obstacle classification task of the laser
points. Next, initial drivable areas are located by fusing obstacle
classification results with image superpixels through self-
learning. Candidate drivable areas in different feature spaces can
then be obtained. These features are: the drivable degree (DD) fea-
ture, the normal vector (NV) feature, the color feature, and the
strength feature. Finally, a Bayesian framework is utilized to fuse
the candidate areas in order to obtain the final drivable area. In
our evaluations, we tested our method using the ROAD-KITTI
benchmark [5]. Our results, when compared with other fusing
methods, demonstrated that the proposed method achieves
state-of-the-art results without requiring training or assumptions
about shape or height; this result validates our method as being
robust and having a high generalization ability.

The key contributions of this paper are as follows:
� We propose an unsupervised detection method based on data
fusion without the need for a strong hypothesis, which ensures
our method’s generalization ability in different urban traffic
scenes.

� We introduce the new concept of co-point mapping, which
describes a novel kind of constraint in the fusion of data from
the laser sensor and camera.
Fig. 1. Framework of the proposed detection method, which can be divided into
three general steps: data fusion, feature extraction, and feature fusion.
� We design a new feature called DD in order to describe the driv-
able degree of the laser points.

2. Related work

A robust road area detection method is central to self-driving
cars. Many methods have been proposed over the past decades
to deal with this problem. These methods can be categorized by
the sensors that are used to acquire data, which include monocular
cameras, stereo vision, laser sensors, and the fusion of multi-
sensors.

Monocular vision-based approaches have been widely used in
road detection. Compared with other sensors, a visual sensor is
small in size, low in cost, and easy to install. Moreover, rich visual
information is available from a visual sensor, which has a wide
range of detection. In addition, the concealment capability of a
visual sensor is better than those of other sensors. Above all, the
principle and structure of a visual sensor are similar to those of
human sensory organization. In road detection, 2D information
on the visual scene, such as color, corner points, texture, edge,
and shape, are utilized. Regarding color cue, it is common to pro-
cess segmentation in the RGB color space [6], HSI color space [7],
or other color spaces. Jau et al. [8] compared RGB and HSI color seg-
mentation under different lighting conditions. Finlayson et al. [9]
presented a physics-based illumination invariant space that
achieves a shadow-free image representation, which was used in
this paper. Moreover, by exploiting the spectral properties of the
camera that is used to capture raw color images, Maddern et al.
[10] proposed another illumination invariant color space that
reduces the effects of illumination variation caused by sunlight.

Another hot research topic is convolutional neural network
(CNN)-based methods, which have achieved great success in this
field [11,12]. Originally, CNNs were used to solve classification
problems [13,14]; however, with the emergence of recent work
[15,16], the utilization of CNN-based methods for sematic segmen-
tation has entered a period of upsurge.

However, the conception of a road is different from other vision
conceptions because the pixel appearance in vision is not the only
criterion to detect a road area. Physical attributes, such as flatness,
contribute more to the conception of a road, which indicates that
methods that rely only on monocular vision are not reliable
enough for self-driving cars. Although CNN-based methods can
achieve good performance, they heavily depend on training, may
fail to deal with unseen scenarios, and can have overfitting prob-
lems. Unlike problems such as scene categorization [17] or similar-
ity learning [18], road area detection is an ill-conditioned problem
that requires using 2D information to solve a task in a three-
dimensional (3D) real-world scene. Although many 3D cues, such
as the horizon line and vanishing point, are used to alleviate this
problem [19–21], the detection of these 3D cues is in itself an
unsolved problem [22,23]; some geometric assumptions may
result in failure or may reduce the generalization ability of the
methods, as shown in Fig. 2.

In recent years, the advent of sensors has inspired the develop-
ment of many road-detection methods based on laser sensors that
can offer supplementary depth measurement of real-world 3D
scenes. These methods, which use the spatial locations of laser
points to analyze a scene and identify flat areas as road, can be
classified as follows:

(1) Grid-based methods. Since point clouds contains a large
quantity of data, 2D grid-based methods [24–26] are commonly
used to reduce the data size, while statistics of the points within
a grid are calculated in order to characterize each grid, and may
include the average height and the maximum height difference.
Although these methods are straightforward, noise-robust, and
efficient, the selection of appropriate thresholds is difficult.



Fig. 2. A comparison of different road scenes in which 3D cues may work or fail. (a) A situation in which 3D cues work well; (b) a situation in which 3D cues may fail because
of the shift of the vanishing point and the curved shape of the road.
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(2) Plane-fitting-based methods. The basic assumption in
these methods is that the road is flat and smooth, so that it can
be fitted by a plane with several parameters [27,28]. Typical
plane-estimation methods are well developed, such as random
sample consensus (RANSAC) [29]. However, these methods maybe
suffer in heavy traffic scenarios because of the lack of true ground
laser points.

(3) Methods based on the spatial relationship between
neighboring points. These methods [30,31] take advantage of
the spatial relationship between neighboring points to extract fea-
tures (such as the normal vector) or probabilistic models in order
to estimate the ground laser points or obstacle laser points (such
as those of the curb).

All methods that are based on laser sensors suffer from the
sparsity of point cloud data; as a result, it is difficult to reconstruct
details from the laser points.

Detecting the road area can be regarded as a two-class labeling
problem, and the conditional random field (CRF) framework is pop-
ular in this area [32,33]. The CRF framework formulates a labeling
problem as a calculation of the maximum posterior probability of
the overall labeling result, given the observations from all aspects.
This is a general framework in which different observations can be
defined by designing different entries of the energy function and
potential function. Thus, CRF-based methods are widely used in
fusion methods in order to both balance the data from different
sources and obtain optimal fusion results [34,35]. However, the
computation and memory consumption of CRF-based methods
are large, and manually labeled data are required.

To overcome the drawbacks mentioned above, this paper pro-
poses a co-point mapping-based self-adaptive method of drivable
area detection by fusing data from a laser sensor with data from
a monocular camera. First, our method conducts several prepro-
cessing steps, which include: conducting superpixel segmentation
to obtain the minimum image-processing units for subsequent
steps; projecting the laser points onto an RGB image via cross-
calibration and co-point mapping; and utilizing the Delaunay tri-
angulation properties to preprocess the laser points in order to
establish a spatial relationship. Next, pixel-depth data fusion is
processed by leveraging the preprocessing results, and obstacle
classification can be performed by utilizing the data fusion results.
By combining superpixels with the obstacle classification results,
an initial drivable area is located. This step is followed by
feature-extraction processing, by which we obtain the DD feature,
NV feature, color feature, and strength feature. All these features
can be easily transformed into probabilities in a self-learning man-
ner. Finally, a joint probability can be calculated superpixel by
superpixel, by leveraging the Bayesian framework to obtain a joint
probability map of the drivable areas.

Our proposed method distinguishes itself from other detection
techniques in three main aspects:
� Our method requires no strong hypothesis, training processing,
or labeled data.

� By leveraging the co-point perspective and fusing data from
both a laser sensor and a monocular camera, our method is
robust to variation in illumination and can cope with complex
scenarios.

� Our method adopts superpixel segmentation, and superpixels
are then taken as the minimum processing elements. The
advantages of replacing pixels with superpixels will be detailed
later.
Unlike methods that lack feature-level fusion [36,37], our pro-

posed method combines monocular vision with laser sensors to
obtain abundant information on both the data level and the feature
level. Our method extracts and fuses features in a self-learning
way. In addition, co-point perspective and superpixel representa-
tion are utilized to make the method more robust and efficient.
As demonstrated by the experimental results, our method achieves
higher accuracy than other methods. Thus, we consider our
method to be a general, practical, and self-adaptive approach to
the detection of drivable areas for self-driving cars.
3. Preliminary knowledge

In this section, we provide the preliminary knowledge that is
required by our method, including superpixel representation of
images, the projection of laser points onto an RGB image, and the
establishment of log-chromaticity space.
3.1. Superpixel representation

The idea of superpixels was originally developed by Ren and
Malik [38]; a superpixel is a group of pixels that is coherent in color
or texture, such that a superpixel representation preserves most of
the structural information of the original image.

In this paper, superpixels, rather than pixels, are taken as the
minimum processing units in image-processing steps, and assist
in shaping candidate areas. Because of the performance improve-
ment of superpixel methods, replacing pixels with superpixels
reduces the computation and memory costs without sacrificing
much accuracy. In addition, the usage of superpixels takes color
information into account and achieves robust results when dealing
with situations with complex illumination.

In order to segment the original images better, the superpixel
method should meet two requirements: First, the speed of super-
pixel generation should be fast; and second, the generated super-
pixels should ‘‘stick” to the edges.

As proposed in Refs. [39,40], we utilized sticky-edge adhesive
superpixels, which meet our requirements. This method is an
improved version of the simple line interface calculation (SLIC)



Fig. 4. Examples of color space transformation from (a) RGB space to (b) log-
chromaticity space. It can be seen that the shadow is successfully removed but the
color difference between the road and other objects (i.e., the yellow car and green
plants) is well-preserved.

482 Z. Liu et al. / Engineering 4 (2018) 479–490
method [41], by the addition of an edge term. With this added edge
term, the generated superpixels better adhere to the edges, thus
preserving more image structure and resulting in better object
boundaries.

3.2. Laser points project processing

As shown in Fig. 3, laser sensor coordinates are intended to be
projected into the camera coordinates, as presented in Ref. [42].
The projection of a 3D point p laser ¼ ðxl; yl; zl;1ÞT in the laser sensor

coordinate to a point p camera ¼ ðxc; yc; zc;1ÞT in the camera coordi-
nate is given as:

p camera ¼ R0
rectT

cam
velop laser ð1Þ

where R0
rect is the rotation matrix. Here, R0

rect is expanded into a 4 �
4 matrix by appending a fourth zero row and column, and by setting
R0

rectð4;4Þ ¼ 1. Tcam
velo is the transformation matrix, and is obtained by:

Tcam
velo ¼

Rcam
velo tcamvelo

0 1

� �
ð2Þ

where Rcam
velo and tcamvelo are the rotation matrix and the translation vec-

tor, respectively, as given in Ref. [42]:

ðu;v ;1ÞT ¼ PðiÞ
rectðxc; yc; zc;1ÞT ð3Þ

where PðiÞ
rect is the projection matrix from the ith image plane (we

use a second camera in our work) for all points pc, from which
the location information of the camera coordinates, ðui;v iÞ, is
obtained.

After the projection and rectification, we obtained a set of laser

points, P ¼ fPigNi¼1, where Pi ¼ ðxi; yi; zi;ui;v iÞ.

3.3. Log-chromaticity color space

As presented in Ref. [36], in order to obtain color features that
are independent of shadows and lighting conditions, we trans-
formed RGB color images (I) into log-chromaticity spaces (Ilog), in
order to generate an illuminant-invariant image Il�c . Each
flogðR=GÞ; logðB=GÞg pixel value in the log-chromaticity space cor-
responds to a fR;G;Bg pixel value in the original RGB image. As
shown in Fig. 4, we obtain a grayscale image Il�c by projecting
the flogðR=GÞ; logðB=GÞg pixel values along an orthogonal axis
defined with the angle h. The angle h is defined as the invariant
direction orthogonal to the lighting change lines; it is device
dependent and can be calibrated. We set h to 45�, as suggested in
Ref. [43]. Ilog can be calculated as follows:

Ilogðu; vÞ ¼ log½IRðu; vÞ=IGðu;vÞ� þ log½IBðu; vÞ=IGðu; vÞ� � tan h

1þ tan2 h
ð4Þ
4. Pixel-depth data fusion

Rather than using sensors that can directly detect obstacles
[44], we try to find obstacles by leveraging the fusion of the spatial
Fig. 3. An example of laser points and image pixels alignment. The color of each
laser point represents its depth, so the image is better viewed in color.
location information provided by a laser sensor with the appear-
ance information provided by a monocular camera. This section
presents a series of processes that are designed for pixel-depth
data fusion. The first process fuses superpixels with laser points
for efficiency and robustness. The second process, co-point map-
ping, involves fusing points from the laser sensor with points on
the edge of the image segmentation, in order to eliminate laser
points within the flat area. The third and final process involves
the fusion between the spatial information and the image coordi-
nates; this step models the spatial relationship of the laser points
and the obstacles by generating an undirected graph.

4.1. Image processing with superpixel representation

Our method adopts the superpixel representation described in
Section 3.1. In addition to the advantages mentioned above, it
was found that superpixels and laser points are complementary.
First, laser points contain spatial location information that cannot
be obtained from a monocular camera; second, superpixels are
dense, so that robust local statistics of both pixels and laser points
can be calculated. Superpixels also contain color information that
cannot be captured by a laser sensor. Therefore, instead of pixels,
superpixels were taken as the minimum units in the image-
processing steps. In Section 5, superpixel segmentation will be
used to learn features of the initial drivable area.

4.2. Bijection of edge information via co-point mapping

Since the laser points and image pixels are both provided
through observation of the same scene at the same time, they
are reflections of the same structure. Therefore, the projection
between them should satisfy certain constraints. Inspired by the
conception of collineation in projection geometry, we introduce a
new concept, co-point mapping, to describe this kind of constraint.
Similar to the bijection of collineation, co-point mapping repre-
sents a bijection that maps points from a laser sensor to points
on the edge of the image segmentation.

Using co-point mapping, we can improve the alignment perfor-
mance and eliminate undesired laser points. More specifically,
edges can be regarded as the basic element that affects both the
appearance of pixels and the structure of laser points. Bijection
of edge information between pixels and laser points is the key in
data fusion. When aligning pixels and laser points, edges must be



Fig. 6. The result of obstacle classification. This result shows that our method can
detect obstacles (i.e., curbs, walls, and cars) well and is not affected by pixel
appearances.
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aligned correctly. Using cross-calibration, an initial alignment can
be obtained. Next, we can improve that alignment through co-
point mapping. Similarly, bijection of edge information can elimi-
nate redundant laser points that are located in a flat area. It can
accelerate the whole process and improve the robustness of our
algorithm, since there may be noisy laser points within the flat
area.

In this paper, we only use co-point mapping to eliminate laser
points within the flat area, as shown in Fig. 5. First, we use the
edges of all superpixels to form an edge pool of the whole image.
Obviously, there are many redundant edges. However, this is a rea-
sonable practice in order to retain all the true edges in the pool. In
practice, image dilation is used to overcome alignment errors.
Next, laser points located in the edge pool are kept for further pro-
cessing, while others are discarded. The experimental results
showed that 27% of the laser points were eliminated without sac-
rificing too much accuracy; this finding demonstrates that co-point
mapping is feasible and efficient.

4.3. Obstacle classification

The obstacle classification step can be formulated as finding the
mapping function, obðPiÞ, where:

obðPiÞ ¼
1; if Pi is an obstacle point
0; otherwise

�
ð5Þ

The classification result is shown in Fig. 6.
We assume that the value of obðPiÞ only depends on the flatness

of the surface around Pi, which in the real world is reflected by the
laser points. Thus, the obstacle classification problem is decom-
posed into two sub-problems: how to find the surface around Pi

and how to determine whether it is flat or not.
The first sub-problem is solved by leveraging a Delaunay trian-

gulation [4]. A Delaunay triangulation for a set of points in a plane
is a triangulation for which no point in the set is inside the circum-
circle of any triangle in the triangulation. Its properties are such
that each point has six surrounding triangles, on average. The near-
est neighbor graph is a subgraph of the Delaunay triangulation, so it
can be used to build a spatial relationship among the laser points.
For each Pi ¼ ðxi; yi; zi;ui;v iÞ, we use its image coordinate frame
ðui;v iÞ in a planar Delaunay triangulation to build an undirected
graphG ¼ fP; Eg, where E is the set of edges representing the spatial
relationships among Pi. Then, the surface around Pi is composed of
Fig. 5. An example of co-point mapping. Unlike (b), the image in (a) keeps only the
laser points that are near the edges of superpixels. Although many points are
discarded, the structure is successfully preserved.
surfaces (triangles) determined by fðuj;v jÞ j ¼ i or Pj 2 NbðPiÞ
�� g,

where NbðPiÞ is the set of points connected to Pi. The edge ðPi;PjÞ
is eliminated if it does not satisfy the following:

kðPi � PjÞk < e ð6Þ

where kðPi � PjÞk is the Euclidean distance of ðxi; yi; ziÞ and ðxj; yj; zjÞ,
and e is the maximum length of any edge.

For the second sub-problem, the flatness of the surface around
Pi can be measured by calculating the normal vector of its neighbor
triangles. Next, the normal vector NðPiÞ ¼ ðxni ; yni ; zni Þ is calculated
by averaging the normal vectors of these triangles. Then obðPiÞ is
obtained by the following:

obðPiÞ ¼
1; if arcsinðzni =kNbðPiÞkÞ > c

0; otherwise

�
ð7Þ

where c is a manually set parameter, NbðPiÞ is the set of points con-
nected to Pi, and the normal vector of Pi is NðPiÞ ¼ ðxni ; yni ; zni Þ. Eq. (7)
can be explained as follows: If the angle between NbðPiÞ and the
horizontal plane is larger than c, Pi will be classified as an obstacle
point; otherwise, it will not be classified so. Thus, c denotes the
maximum angle threshold, which is set to 60� in the experiment.
The whole process is visualized in Fig. 7.
Fig. 7. A visualization of the obstacle classification step. Each black dot stands for a
laser point. The relationships between the points are derived by planar Delaunay
triangulation. The triangles’ normal vectors are then calculated in the laser sensor
coordinate frame. (Black arrows: the normal vectors of the neighbor triangles;
orange arrow: the expected normal vector of the central black dot, which is
calculated by averaging the surrounding black arrows)
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5. Detecting drivable areas

This section explains the key step of our proposed method. First,
a direction ray map (IDRM) is obtained from the obstacle classifica-
tion result. Next, an initial drivable area is obtained by combining
IDRM with superpixels. Afterward, the initial drivable area is charac-
terized by features from different observations. The probabilities of
each superpixel within the initial drivable area being foreground
are then computed in a self-learning way. Finally, a Bayesian
framework is utilized to derive the probability map of drivable
areas.

5.1. Generating an initial drivable area

5.1.1. Detecting ray
The direction ray map IDRM is generated as shown in

Algorithm 1.

Algorithm 1. Generating direction ray map

Input:

The set of laser points fPðhÞgHh¼1;
Output:
Direction ray map, IDRM

1: Initial IDRM with the size of I and zeros elements
2: for h ¼ 1 to H do

3: Find obstacle set O ¼ fPi obðPiÞ ¼ 1 & Pi 2 PðhÞ
��� g

4: if O ¼ £ then

5: PðhÞ
bin ¼ argmaxPðhÞdistðPðhÞ

i ;PbaseÞ
6: else

7: PðhÞ
bin ¼ argminPðhÞ

i 2OdistðP
ðhÞ
i ;PbaseÞ

8: end if

9: Line point PðhÞ
bin with point Pbase in IDRM

10: end for
Fig. 8. An example of a ‘‘leakage” problem. (a) The ‘‘leakage” problem: the green dot is Pb

of minimum filtering; (d) a comparison of each ray’s length before (blue curve) and afte
First, every Pi is transformed to polar coordinates in order to
better represent the drivable area. That is, ðui;v iÞ is transformed
into the polar coordinate whose origin point is the middle bottom
pixel of the image (noted as Pbase). Thus, P is represented as

fPðhÞgHh¼1, where PðhÞ ¼ fPðhÞ
i gN

ðhÞ

i¼1 and PðhÞ
i represents a point belongs

to the hth angle range. Because of the sparsity of P, it is necessary
to address two problems: first, how to get over the ‘‘leakage” prob-
lem, as shown in Fig. 8; and second, how to obtain dense pixel
areas from sparse rays.

For the former problem, the solution is provided by filtering the
rays’ length calculated in the image coordinate frame, as shown in
Fig. 8(d). Since the width of a car is not negligible, the question of
whether a region that is represented by one ray is drivable or not
depends on how wide that region is. In other words, if a region is
too narrow for a car to pass, no matter how flat that region may
be, that region cannot be regarded as drivable. Thus, minimum fil-
tering is adopted and the ‘‘leakage” problem is solved, as shown in
Fig. 8(c).

For the latter problem, the most straightforward solution is to
increase the number of H; however, doing so will aggravate the
former problem. Therefore, we combine IDRM with superpixels to
obtain the initial drivable area. As mentioned in Section 4.1, this
solution has two advantages: First, it greatly reduces the amount
of data by replacing pixels with superpixels; and second, it fuses
depth and color information.

After the combination of IDRM with superpixels, the initial driv-
able area is represented by a set of superpixels defined as
Sint ¼ fSi Si [ IDRM–£j g, and PSi represents the set of laser points
located in Si. Therefore, all of the following features can be com-
puted based on superpixels instead of pixels, thereby introducing
robust local statistics and accelerating the entire algorithm.
5.1.2. Generating the DD feature
To detect drivable areas, features that can describe the drivable

degree must be defined and well designed. In this paper, the DD
feature is proposed, as shown in Algorithm 2.
ase; (b) In this image, the detecting rays are represented by white lines; (c) the result
r (orange) being processed by minimum filtering.
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Algorithm 2. Getting DD feature
Input:

The set of laser points fPðhÞgHh¼1;
Output:

DD feature for every point DðPðhÞ
i Þ

1: Initial DðPðhÞ
i Þ with the zero ðh ¼ 1 ! H; i ¼ 1 ! NðhÞÞ

2: for h ¼ 1 to H do

3: for i ¼ 1 to NðhÞ do

4: if obðPðhÞ
i Þ ¼ 1 then

5: for j ¼ 1 to NðhÞ do

6: DðPðhÞ
j Þ ¼ DðPðhÞ

j Þ þ absðzPðhÞ
i

� zPðhÞ
i�1
Þ

7: end for
8: end if
9: end for

10: end for

Points in PðhÞ are arranged by their distances to Pbase in the image
coordinate frame, which signifies that all points in PðhÞ satisfy the
following:

distðPðhÞ
i ;PbaseÞ > distðPðhÞ

i�1;PbaseÞ; i ¼ 2 ! NðhÞ ð8Þ
Fig. 9 provides a schematic diagram of the DD value calculation.

Fig. 10(c) visualizes what occurs when the DD feature is taken
advantage of [45].

5.2. Obtaining self-adaptive feature models

Based on the obtained initial drivable area, candidate drivable
areas are self-adaptively learned from four features in different
probability spaces: the DD, NV, color, and strength features.

5.2.1. The DD feature
The DD feature of each superpixel (DðSiÞ) is calculated as

follows:

DðSiÞ ¼ 1
kPSik

X
PSi

DðPiÞ ð9Þ

Since DðPiÞ is related to the difference in height, it is considered
that the smaller DðPiÞ is, the more drivable the corresponding area
that Pi represents will be. The self-adaptive probability space of the
DD feature used to locate the candidate drivable area is built
through a Gaussian-like model as follows:
Fig. 9. A schematic diagram of DD calculation. The black dotted line on the left
represents a ray in IDRM. Blue dots represent non-obstacle laser points, red dots
represent obstacle laser points, and the big green dot represents Pbase. In this figure,
PðhÞ
4 is classified as an obstacle point; next, the difference of height between PðhÞ

4 and
PðhÞ
3 is added to the DD value of all points after PðhÞ

4 , so as to obtain PðhÞ
6 .
DprobðSiÞ ¼ expf�½DðSiÞ � lD�2=2r2
Dg; if DðSiÞ � lD

0; otherwise

(
ð10Þ

where lD and r2
D are the parameters of the Gaussian-like distribu-

tion that can be obtained by utilizing Sint without the need for man-
ual setting or training. DprobðSiÞ represents the probability of Si
belonging to the drivable area, given the DD feature observation.

5.2.2. The NV feature
According to Section 4.3, it is believed that the larger the value

the normal vector has in zni , the more drivable the surface is. There-
fore, the NV feature of each superpixel, NðSiÞ, is calculated using
the minimum value of zni Among PSi . Similar to DprobðSiÞ, a self-
adaptive probability feature space based on a Gaussian-like model
with parameters ln and r2

n is generated as follows:

NprobðSiÞ ¼ expf�½NðSiÞ � ln�2=2r2
ng; if NðSiÞ � ln

1; otherwise

(
ð11Þ

where NprobðSiÞ is the probability of Si belonging to the drivable area,
given the NV feature observation. The parameters ln and r2

n are
estimated using the same steps as those used to estimate lD and
r2

D, as mentioned above. Therefore, this model is self-adaptive and
no manual setting is involved.

5.2.3. The color feature
As mentioned in Section 3.3, the illuminant-invariant image is

utilized to obtain the color feature of Sint. Similar to DðSiÞ and
NðSiÞ, a parametric probability model is built with the Gaussian
parameters lc and r2

c as follows:

CprobðSiÞ ¼ exp � IlogðSiÞ � lc

� �2
2r2

c

( )
ð12Þ

where CprobðSiÞ is the probability of Si belonging to the drivable area,
given the color observation, and IlogðSiÞ represents the transformed
pixel value of Si.

5.2.4. The strength feature
The strength feature (SgðSiÞ) of Si provides a measure of the

smoothness of each superpixel, which is actually the overlap of
IDRM with each superpixel. The probability of Si being the drivable
area is modeled as follows:

SgprobðSiÞ ¼
SgðSiÞdistðSi;PbaseÞ

AðSiÞ ð13Þ

where AðSiÞ is the area of Si and distðSi;PbaseÞ is the distance between
Si and Pbase in the image coordinate.

5.3. The Bayesian framework

The fusion of features is conducted in the Bayesian framework.
The objective is to find the posterior probability that a superpixel
belongs to the drivable area, given the observations from the cam-
era and laser sensor, pðSi ¼ R Obsj Þ, where Obs represents all the
observations detailed above:

obs ¼ fDðSiÞ;CðSiÞ;NðSiÞ; SgðSiÞ Si 2 Sintj g ð14Þ
Next, the probability maps obtained from the above features are

interpreted as the prior conditional probability that a superpixel
belongs to the drivable area. Assuming that the superpixels are
conditionally independent, the posterior probability of each super-
pixel is obtained as follows:

pðSi ¼ R Obsj Þ /
Y4
j¼1

p Si ¼ R Obsj
��� 	

pðSi ¼ RÞ ð15Þ



Fig. 10. The results of IDRM, the DD feature, and the final probability map. Column (a) shows the original images, which contain different scenarios such as car occlusion, heavy
shadow, and shifting of the road’s vanishing point. Column (b) shows the corresponding IDRM, which cover the drivable area well enough to generate the Sint . Column (c)
visualizes the proposed DD feature using Ref. [44]. The bluer an area is, the more drivable it is. The road area is very blue and the sidewalk is between blue and red, whereas
obstacles such as cars and barriers are red. Column (d) shows the final probability maps, demonstrating that the proposed method performs well in different scenarios. The
red bounding boxes in the sixth and eighth rows illustrate how well our method deals with small targets (such as light poles within the bounding boxes in the second
column). The DD is high in front of the light poles, but there is a sudden drop in DD in the area behind these light poles, indicating that these small targets have been
successfully detected.
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where pðSi ¼ RÞ is the probability of a superpixel belonging to the
drivable area, and is obtained by averaging all Sint across the image
set.

6. Experimental results and discussion

To test our proposed method, experiments were carried out
using the ROAD-KITTI benchmark, which includes 289 training
images and 290 testing images [5]. All experimental results were
evaluated in bird’s eye view (BEV) with the following metrics:
max F-measure (MaxF), average precision (AP), precision (PRE)
and recall (REC), false positive rate (FPR), and false negative rate
(FNR). Three datasets were used: Urban Marked (UM), Urban Mul-
tiple Marked (UMM), and Urban Unmarked (UU). To demonstrate
Table 1
A comparison of our approach with the top three laser-sensing methods using the UM (B

Method MaxF AP

HybridCRF 90.99% 85.26%
MixedCRF 90.83% 83.84%
LidarHisto 89.87% 83.03%
RES3D-Velo 83.81% 73.95%
Our method with co-point 83.94% 84.83%
Our method without co-point 84.82% 85.37%
Our method on training set 85.87% 87.85%
the efficiency of our proposed approach (see ‘‘Our method with
co-point” in the tables below), we compared it with the top three
laser-sensing methods from the ROAD-KITTI benchmark’s website:
HybridCRF, MixedCRF, and LidarHisto. We also listed the result
from Ref. [36] (RES3D-Velo) below, since the data fusion proce-
dures our method adopts are similar to those used in that refer-
ence. To show the impact that results from eliminating laser
points by means of co-point mapping, the performances of our
method with and without co-point mapping were compared.
Moreover, we listed the performance of our method with co-
point mapping on a training set, in order to demonstrate that our
method is unsupervised.

As shown in Tables 1–4, our method yields the best perfor-
mances in PRE and FPR in the UMM and UU datasets, which
EV) dataset.

PRE REC FPR FNR

90.65% 91.33% 4.29% 8.67%
89.09% 92.64% 5.17% 7.36%
91.28% 88.49% 3.85% 11.51%
78.56% 89.80% 11.16% 10.20%
79.11% 89.40% 10.76% 10.60%
78.61% 92.09% 11.42% 7.91%
81.56% 90.67% 9.43% 9.33%



Table 2
A comparison of our approach with the top three laser-sensing methods using the UMM (BEV) dataset.

Method MaxF AP PRE REC FPR FNR

HybridCRF 91.95% 86.44% 94.01% 89.98% 6.30% 10.02%
MixedCRF 92.29% 90.06% 93.83% 90.80% 6.56% 9.20%
LidarHisto 93.32% 93.19% 95.39% 91.34% 4.85% 8.66%
RES3D-Velo 90.60% 85.38% 85.96% 95.78% 17.20% 4.22%
Our method with co-point 91.80% 92.09% 91.31% 92.29% 9.65% 7.71%
Our method without co-point 92.41% 92.31% 91.61% 93.22% 9.38% 6.78%
Our method on training set 92.15% 93.56% 92.84% 91.48% 7.70% 8.52%

Table 4
A comparison of our approach with the top three laser-sensing methods using the averaged URBAN dataset (BEV).

Method MaxF AP PRE REC FPR FNR

HybridCRF 90.81% 86.01% 91.05% 90.57% 4.90% 9.43%
MixedCRF 89.46% 83.70% 88.52% 90.42% 6.46% 9.59%
LidarHisto 90.67% 84.79% 93.06% 88.41% 3.63% 11.59%
RES3D-Velo 86.58% 78.34% 82.63% 90.92% 10.53% 9.08%
Our method with co-point 87.02% 86.55% 83.49% 90.87% 9.90% 9.13%
Our method without co-point 87.70% 87.31% 83.50% 92.36% 10.06% 7.64%
Our method on training set 86.68% 89.71% 87.23% 91.78% 42.22% 8.44%

URBAN is the combination of UM, UMM and UU.

Table 3
A comparison of our approach with the top three laser-sensing methods using the UU (BEV) dataset.

Method MaxF AP PRE REC FPR FNR

HybridCRF 88.53% 80.79% 86.41% 90.76% 4.65% 9.24%
MixedCRF 82.79% 69.11% 79.01% 86.96% 7.53% 13.04%
LidarHisto 86.55% 81.13% 90.71% 82.75% 2.76% 17.25%
RES3D-Velo 83.63% 72.58% 77.38% 90.97% 8.67% 9.03%
Our method with co-point 82.57% 81.49% 75.54% 91.04% 9.61% 8.96%
Our method without co-point 83.09% 83.25% 75.52% 92.36% 9.76% 7.64%
Our method on training set 82.03% 82.82% 74.63% 91.05% 11.01% 8.95%
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demonstrates that our method covers the road area well. Table 4
averages the performance; our method yields the best AP, PRE,
and FPR, which reveals the robustness of our method in different
scenarios. Compared with our method without co-point mapping,
our method with co-point mapping eliminates around 30% of the
laser data (as shown in Table 5), yet yields similar performances;
this finding indicates that co-point mapping can successfully pre-
serve the sematic structure of an image. Above all, although our
method is unsupervised, it yields a competitive performance when
compared with supervised methods.
Table 5
Number of laser points used by our methods.

Our method with
co-point

Our method without
co-point

Eliminating
rate

Training set 13 194 18 873 30.09%
Testing set 12 902 18 663 30.87%

Table 6
Ablation study of our method on UM training set (BEV).

Item compared MaxF AP

Baseline 81.34% 86.42%
Initial drivable area 78.61% 64.00%
Color feature 83.97% 78.65%
Strength feature 81.39% 84.44%
DD feature 84.56% 74.42%
NV feature 85.38% 77.10%
Fusion with co-point 85.87% 87.85%
Fusion without co-point 86.55% 88.10%
In addition, in order to verify how much the feature fusion
improves the performance, we compared the feature fusion results
with each individual feature’s probability map, as well as with Sint

and the baseline, in Tables 6–9. All these experimental results were
obtained using the training set. As Tables 6–9 show, significant
improvement was achieved in MaxF and AP by means of feature
fusion.

When compared with the method that used all the laser points
(see ‘‘Fusion without co-point” in the tables below), the method
with co-point mapping cut off around 30% of the laser points, on
average, in the training set (as shown in Table 5), but still yielded
a similar performance.

Sint shows exceptional performance in REC and FNR with a sim-
ilar FPR as ‘‘Baseline” in the tables below, so it is a feasible choice to
use Sint to estimate the parameters, as detailed in Section 5.

As shown in Fig. 11, the image areas bounded by red lines are
not road areas in the ground truth in the ROAD-KITTI dataset; how-
ever, our method tends to identify these areas as foreground, since
PRE REC FPR FNR

77.09% 86.09% 11.76% 13.91%
67.25% 94.58% 21.18% 5.42%
77.57% 91.52% 12.17% 8.48%
80.00% 82.82% 9.52% 17.18%
78.71% 91.34% 11.36% 8.66%
81.81% 89.28% 9.13% 10.72%
81.56% 90.67% 9.43% 9.33%
81.90% 91.76% 9.33% 8.24%



Table 7
Ablation study of our method on UMM training set (BEV).

Item compared MaxF AP PRE REC FPR FNR

Baseline 79.48% 84.04% 72.83% 87.47% 35.59% 12.53%
Initial drivable area 88.06% 79.48% 82.21% 94.81% 22.38% 5.19%
Color feature 91.41% 89.92% 89.96% 92.90% 11.31% 7.10%
Strength feature 88.15% 90.71% 83.72% 93.08% 19.74% 6.92%
DD feature 90.75% 86.23% 89.64% 91.89% 11.58% 8.11%
NV feature 91.83% 89.33% 93.05% 90.64% 7.38% 9.36%
Fusion with co-point 92.15% 93.56% 92.84% 91.48% 7.70% 8.52%
Fusion without co-point 92.99% 93.81% 93.11% 92.87% 7.49% 7.13%

Table 9
Ablation study of our method on URBAN training set (BEV).

Item compared MaxF AP PRE REC FPR FNR

Baseline 77.95% 82.47% 72.83% 83.88% 20.03% 16.11%
Initial drivable area 80.31% 66.99% 70.02% 95.08% 21.91% 4.92%
Color feature 84.58% 79.27% 78.72% 91.91% 12.77% 8.09%
Strength feature 82.72% 85.56% 79.37% 86.42% 13.16% 13.58%
DD feature 85.44% 76.23% 80.19% 91.81% 11.85% 8.19%
NV feature 86.15% 78.65% 82.90% 90.05% 9.29% 9.95%
Fusion with co-point 86.68% 88.08% 83.01% 91.07% 9.38% 8.93%
Fusion without co-point 87.51% 88.42% 83.60% 92.11% 9.08% 7.89%

Table 8
Ablation study of our method on UU training set (BEV).

Item compared MaxF AP PRE REC FPR FNR

Baseline 73.02% 76.96% 68.57% 78.10% 12.74% 21.90%
Initial drivable area 74.26% 57.49% 60.61% 95.85% 22.16% 4.15%
Color feature 78.37% 69.23% 68.64% 91.31% 14.84% 8.69%
Strength feature 78.62% 81.54% 74.39% 83.37% 10.21% 16.63%
DD feature 81.00% 68.05% 72.23% 92.19% 12.61% 7.81%
NV feature 81.23% 69.53% 73.85% 90.24% 11.37% 9.76%
Fusion with co-point 82.03% 82.82% 74.63% 91.05% 11.01% 8.95%
Fusion without co-point 82.99% 83.36% 75.80% 91.69% 10.41% 8.31%

Fig. 11. Examples of areas with ambiguous semantics. The image areas bounded by red lines are not ‘‘road” in a narrow sense, but many of these areas are designed for
driving.
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detecting drivable areas is our main concern. Thus, the FPR value of
our results is higher in the situation shown in Fig. 11. In fact, these
bounded areas have ambiguous semantics, and include the transi-
tion zone between a sidewalk and road, the entrance of parking
lots, and slopes for vehicles to drive onto the sidewalk. Many of
these areas are designed for vehicles to drive on when necessary
for convenience. In real-life application, self-driving cars are
expected to choose these kinds of flat areas as candidate roads in
an emergency (such as when avoiding a suddenly turning vehicle);
therefore, these areas should be considered by planning
algorithms.
7. Conclusion and future work

This paper proposes a self-adaptive method for drivable area
detection by fusing pixel information with spatial information
from laser points based on co-point mapping. Four features (the
DD, NV, color, and strength features) are fused in a Bayesian frame-
work. This method, which is based on data fusion, overcomes the
disadvantages of using a single sensor when dealing with highly
random and complex urban traffic scenes. Our method requires
no strong hypothesis, training process, or labeled data. In addition,
experiments conducted using the ROAD-KITTI benchmark testify to
the efficiency and robustness of our method. Regarding future
work, the first task is to divide the road into drivable areas and
drivable area candidates for emergency use. Next, a dataset that
can better deal with the problem of ambiguous semantics is
needed. Finally, a field-programmable gate array (FPGA) imple-
mentation of our method is required in order to realize the real-
time application of this method for self-driving cars.
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