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Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and
controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path plan-
ners and trajectory-tracking controllers are usually included in a control loop. This paper highlights the
implementation of a trajectory-tracking controller on a stepper motor-driven Hilare robot, with a trajec-
tory that is described as a set of waypoints. The controller was designed to handle discrete waypoints
with directional discontinuity and to consider different constraints on the actuator velocity. The control
parameters were tuned with the help of multi-objective particle swarm optimization to minimize the
average cross-track error and average linear velocity error of the mobile robot when tracking a predefined
trajectory. Experiments were conducted to control the mobile robot from a start position to a destination
position along a trajectory described by the waypoints. Experimental results for tracking the trajectory
generated by a path planner and the trajectory specified by a user are also demonstrated. Experiments
conducted on the mobile robot validate the effectiveness of the proposed strategy for tracking different
types of trajectories.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The application of mobile robots, and particularly wheeled
mobile robots (WMRs), is exponentially increasing in today’s
fast-growing market. These robots play a major role in many sec-
tors, with their applications ranging from service robots to military
robots. The Hilare robot is one type of robot among WMRs with a
number of applications, primarily in indoor environments. Fig. 1
provides a schematic diagram of a Hilare robot. This type of mobile
robot has two independently actuated wheels mounted on either
side of the body in such a way that the central axis of wheels
coincides with each other, and has one or more passive wheels
to balance the robot [1]. The ease of design, ease of manufacturing,
and ease of predicting the dynamics for this type of mobile robot
make it a simple, suitable, and economic choice among the differ-
ent ground contact mobile robots that are currently available [2].

The motion of a Hilare robot is controlled by controlling the
velocities of the independent right and left wheels. When the
wheels roll on the contact surface without lateral slip, non-
holonomic behavior is induced in the robot motion. In the inverse
kinematics of the mobile robot, this non-holonomic behavior
appears as a constraint on the robot velocity that cannot be trans-
formed into a position constraint [3]. Although the robot cannot
move sideways, it can reach any desired position and orientation
in the workspace by taking a complex trajectory. Since the robot
cannot move sideways, finding an optimal trajectory from an ini-
tial point to a final point through closely packed obstacles, and
controlling the robot through this trajectory, are challenging tasks.
To serve this purpose, path planners and trajectory-tracking con-
trollers are usually included in a control loop. The same tasks
would be much easier if the mobile robot had the ability to move
sideways.

A trajectory-tracking controller is the lowest level in a layered
control architecture, and is essential for the motion control of
any mobile robot. The main objective of the trajectory-tracking
controller is to reduce the cross-track error [4]. Over the years,
many approaches have been developed for the control of the Hilare
robot [5]. The simplest approach to control the motion of this
mobile robot is to use motion primitives, such as straight motion
and in-place turning. A suitable combination of these primitives
is used to control the robot through the predefined trajectory
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Fig. 1. Schematic diagram of a Hilare robot. LT: length of the platform; wT: width of
wheel track.

Fig. 2. Hilare robot tracking waypoints. Pi (xi, yi, hi): posture of the mobile robot; dT:
accepted transition distance; dw: wheel diameter; xi: angular velocity.
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[6,7]. However, this strategy may cause unwanted jerks and oscil-
lations that affect the smoothness of the motion and the stability.
Research on path-tracking controllers for a car-like robot [8] has
shown that the stability of the controller is affected also by look-
ahead distance. That work also suggests that a large look-ahead
distance will result in cutting corners. According to the literature,
other control methods such as adaptive control, the back-
stepping method, artificial neural networks, fuzzy control, biologi-
cally inspired methods, potential field-based control, and so forth
have been evolved over time for the smooth and stable tracking
control of mobile robots [9–11]. Of these methods, a well-
established method to control a mobile robot is a stable tracking
controller, as proposed by Kanayama et al. [12]. This method is
applicable to all types of autonomous mobile robots. The controller
works such that the position and orientation error of the mobile
robot with respect to a reference trajectory is reduced. The litera-
ture shows that this method can be modified further to develop
smooth tracking controllers [13–15].

A reference trajectory for the controller can be obtained from
the operator or from a path-planning algorithm. In general, path
planning comes before the trajectory-tracking controller in the
control hierarchy, and is very important in mobile robot naviga-
tion. Different approaches have been proposed, with different
levels of complexity, accuracy, and applicability, for planning a fea-
sible path for mobile robots [16]. Geometric path-planning algo-
rithms [17], rapidly-exploring random trees (RRTs) [18], and
probabilistic road maps (PRMs) [19] are some of the algorithms
that can provide a reference trajectory to the tracking controller.
A PRM is a well-known technique for planning an admissible path
for a non-holonomic mobile robot. A PRM-based path planner can
find the trajectory that must be followed by the mobile robot in
order to reach the destination and to avoid the various obstacles.

Although many control methods have been developed for
trajectory-tracking control, few efforts have been made to study
a controller that is implemented in a layered control architecture
in which the output of a path planner acts as an input to the con-
troller. The available literature also lacks an explanation of the
implementation of these controllers in Hilare robots with stepper
motor-driven wheels. The current paper focuses on addressing
these gaps in the literature. We propose a control strategy that
can guide a mobile robot along a reference trajectory that is spec-
ified as a set of discontinuous waypoints through which the mobile
robot must move in order to reach the destination. Parameter opti-
mization has been carried out to minimize the average cross-track
error and average linear velocity error of the mobile robot.

The paper is organized as follows: Section 2 presents the
kinematic model and controller design; Section 3 presents the
simulation and optimization of control parameters; experimenta-
tion is presented in Section 4; and conclusions and future work
are detailed in Section 5.
2. Kinematic model and controller design

Consider a Hilare robot, as shown in Fig. 2, located on a two-
dimensional surface for which a global coordinate system (inertial
frame (XI, YI)) is defined. The robot has three degrees of freedom on
the surface. The posture (Pi) of the mobile robot at any given
instant i constitutes the position (xi, yi) of the mobile robot and
its heading angle (hi) (Eq. (1)). Here xi and yi are the inertial frame
intercepts of the center of the axis connecting the actuated wheels.
The direction perpendicular to the axis connecting the center of the
actuated wheels is considered to be the heading direction of the
mobile robot—that is, the X axis of the local frame connected to
the mobile robot. The heading angle (hi) of the mobile robot is
the angle between the XI axis of the inertial frame and X axis of
the local frame. Thus, in further calculations, the mobile robot is
assumed to be a point body located at the center of the axis con-
necting the actuated wheels. The locus of the points (xi, yi) over
time is considered to be the trajectory being tracked by the mobile
robot.

Pi ¼
xi
yi
hi

2
64

3
75 ð1Þ

In the present study, the trajectory to be tracked by the mobile
robot is specified as a path connecting the waypoints from a start
position (Pw0 (xw0, yw0)) to a destination position (Pwn (xwn, ywn))
through a set of discontinuous waypoints (Pwk (xwk, ywk)). Here, k
is an integer between zero and the total number of waypoints (n)
and w stands for waypoint. The linear and angular velocities of
the mobile robot are given by vi and xi, respectively. The rate of
change in the posture ( _Pi) of the mobile robot with respect to the
linear velocity (vi) and angular velocity (xi) of the robot can be
resolved into the horizontal velocity component ( _xi), vertical veloc-
ity component ( _yi), and angular velocity components ( _hi) (Eq. (2)).

_Pi ¼
_xi
_yi
_hi

2
64

3
75 ¼

coshi 0
sinhi 0
0 1

2
64

3
75 v i

xi

� �
ð2Þ

To calculate the linear velocity and angular velocity, the right
and the left wheels of the mobile robot are considered to be rotat-
ing at angular velocities of x1i and x2i, respectively. The linear
velocity of the mobile robot due to the rotation of these wheels
can be calculated by combining the individual wheel velocities,
as shown in Fig. 3(a); the angular velocity can be calculated as
shown in Fig. 3(b).



Fig. 3. (a) Linear velocity of the mobile robot; (b) angular velocity of the mobile robot.
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The linear velocity vi and the angular velocity xi of the mobile
robot due to the rotation of the wheels is given in Eq. (3). Here,
wT is the width of the wheel track and dw is the wheel diameter.
To calculate these velocities, it is assumed that the wheels roll on
the surface without slipping, and that these actuated wheels have
the same diameter.

v i

xi

� �
¼ 1

4

dw dw
2dw
wT

�2dw
wT

" #
x1i

x2i

� �
ð3Þ

Eq. (4) can be obtained by taking the inverse transformation of
Eq. (3). This equation describes the transformation of the velocities
(vi, xi) of the mobile robot into the wheel angular velocities (x1i,
x2i).

x1i

x2i

� �
¼ 1

dw

2 wT

2 �wT

� � v i

xi

� �
ð4Þ

The posture error (Pei = [xei, yei, hei]T) of the mobile robot can be
found by transforming the global posture error of the mobile robot
into the local coordinates (X, Y) of the mobile robot, as shown in
Eq. (5). The global posture error is calculated with respect to the
inertial frame (XI, YI). Here, [xwk, ywk, hwk]T is the required waypoint
posture in the global coordinates.

Pei ¼
xei
yei
hei

2
64

3
75 ¼

coshi sinhi 0
�sinhi coshi 0

0 0 1

2
64

3
75

xwk � xi
ywk � yi
hwk � hi

2
64

3
75 ð5Þ

hwk is calculated as follows:

hwk ¼ tan�1 ywk � yi
xwk � xi

� �
ð6Þ

A kinematic controller is employed to reduce this posture error,
and thus control the robot through the desired trajectory. The
stable tracking controller proposed by Kanayama et al. [12] is
utilized to control the mobile robot such that the posture error will
converge to zero. This control law is given by Eq. (7), in which vci
Fig. 4. Architecture of waypoint tracking controller. T1i and T2i are t
and xci are the control velocities, vri and xri are the reference
velocities of the mobile robot, and k1, k2, and k3 are the control
gains.

vci

xci

� �
¼ vri cos hei þ k1xei

xri þ k2vriyei þ k3v ri sin hei

� �
ð7Þ

The reference waypoint of the controller should be updated
based on the instantaneous posture of the mobile robot so that
the mobile robot can be controlled through the trajectory-
connecting waypoints. A waypoint update function is applied in
the present work in order to calculate the Euclidean distance from
the current position of the mobile robot to the reference position. If
this distance is within an accepted transition distance dT, the refer-
ence posture will be updated and the next waypoint posture will
be selected as the new reference posture. Hence, the accepted tran-
sition area will be a circle of fixed radius dT around the reference
posture. If the robot reaches any point within this circle, then the
reference posture will be updated. The constraint on this transition
is given by Eq. (8). The distance dT works in a similar way to the
look-ahead distance [8] mentioned in the previous section; hence,
the selection of dT is critical. With consideration to cutting corners
and making wide turns, the dT selected in the present work is
27 mm, which is half of the wheel track width.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ei þ y2ei

q
� dT ð8Þ

The architecture of the waypoint tracking controller is shown in
Fig. 4. It consists of a waypoint planner, which provides a set of
waypoints from Pw0 to Pwn that make up the reference trajectory.
The waypoint selector module selects the reference waypoint from
this set. The waypoint selector takes the waypoint Pw1 as the first
reference point; later, it updates the waypoint when the criterion
given in Eq. (8) is satisfied. The error estimation block uses
Eq. (5) to generate the posture error. The controller uses this pos-
ture error and reference velocity to generate the control velocities
vci and xci, as given in Eq. (7). The next module takes care of the
input constraints and calculates the wheel velocities correspond-
ing to the control velocities. The step command generator produces
he triggering signals of the right and left motors, respectively.
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the trigger to control the stepper motor. The new posture of the
mobile robot is calculated by the posture estimation module. Out-
put of this module acts as feedback. A flow chart of the control
algorithm is provided in Appendix A.

The output of the controller module cannot be applied directly
to a real robot. The magnitudes of the control velocities will be very
large because of the discontinuities in the reference path. Various
constraints on the motor may restrict high-magnitude control
velocities being implemented on a real mobile robot. These con-
straints are referred to as ‘‘input constraints.” Examples of input
constraints include the maximum attainable angular velocity of
the driving motor, and user-defined restrictions on the maximum
linear and angular velocities of the mobile robot. Fig. 5 shows the
different input constraints applied to the velocity space of a
forward-moving Hilare robot. To satisfy these input constraints,
the control output (Eq. (7)) must be modified. The user-defined
restrictions on the linear velocity, vmax and vmin, of the mobile
robot can be introduced into the controller by modifying the con-
trol velocity vci using Eqs. (9) and (10), respectively. Here, vim1 and
vim2 are the modified control velocities.

v im1 ¼ a vmax; vcið Þ � vci � vmaxð Þ þ vmax ð9Þ

v im2 ¼ a vci; vminð Þ � vci � vminð Þ þ vmin ð10Þ
where a is a condition parameter , which is defined by Eq. (11).

a m; nð Þ ¼ 0; m � n

1; m > n

�
ð11Þ

where m and n can be any arbitrary value.
Similarly, the user-defined restrictions on the angular velocity

of the mobile robot,xmax andxmin, can be introduced into the con-
troller by modifying the control velocity xci, as shown in Eqs. (12)
and (13), respectively. Here, xim1 and xim2 are modified control
velocities.

xim1 ¼ c xcið Þ � a xmax; xcijjð Þ � xcijj �xmaxð Þ þxmax½ � ð12Þ

xim2 ¼ c xð Þ � a xcijj ; xminð Þ � xcijj �xminð Þ þxmin½ � ð13Þ
where c(x) is a condition parameter for the angular velocity, which
is given by Eq. (14):

c xð Þ ¼ �1; x < 0
1; x � 0

�
ð14Þ

Eq. (15) is obtained by combining Eqs. (9) and (10). Here, vim
indicates the modified linear velocity.

v im ¼ a vmax; vcið Þ � vci � vmaxð Þ þ vmax þ a vci; vminð Þ
� vci � vminð Þ þ vmin � vci

ð15Þ
Fig. 5. Different input constraints applied to the velocity space.
Similarly, Eq. (16) is obtained by combining Eqs. (12) and (13).
Here, xim indicates the modified angular velocity.

xim ¼ cðxciÞ � a xmax; xcij jð Þ � xcij j �xmaxð Þ þxmax½
þa xcij j; xminð Þ � xcij j �xminð Þ þxmin � xcij j� ð16Þ

The maximum possible linear velocity (a) can be calculated as
shown in Eq. (17), by assuming that both motors have the same
properties and both wheels are of the same dimension. Here,
x1max and x2max are the maximum possible angular velocities of
the right and left motors, respectively.

a ¼ dw �x1max

2
¼ dw �x2max

2
ð17Þ

The constraints on the linear velocity and on the angular veloc-
ity of the mobile robot due to this upper limit on the angular veloc-
ity of the motor can be found by combining Eqs. (17) and (4), as
shown below, and by replacing x1 and x2 with x1max and x2max

in Eq. (4).

x1max

x2max

� �
� 1

dw

2 wT

2 �wT

� � v i

xi

� �
ð18Þ

dw
2 x1max

dw
2 x2max

" #
� v i þ xiwT

2

v i � xiwT
2

" #
ð19Þ

a

a

� �
� v i þ xiwT

2

v i � xiwT
2

" #
ð20Þ

a � v i þxiwT

2
and a � v i �xiwT

2
ð21Þ

Considering that xi in the above equations can be positive or
negative, the constraint on the linear velocity and on the angular
velocity is given by Eq. (22).

v i þ wTxi

2

��� ��� � a ð22Þ

The linear velocity and angular velocity calculated in Eqs. (15)
and (16) are further modified, as shown in Eqs. (23) and (24), to
satisfy the restrictions on the maximum attainable angular velocity
of the driving motor, and thus to generate the final control veloci-
ties. These control velocities can be implemented on an actual
mobile robot. Eqs. (23) and (24) are implemented in the wheel
velocity module of the control loop.

v i ¼ a v im þ wTxim

2

��� ���	 

; a

h i
� v im � a
v im þ wTxim

2

�� ��� vmax

 !
þ v im ð23Þ

xi ¼ c ximð Þ a v im þ wTxim

2

��� ���	 

; a

h i
� ximj j � a
v im þ wTxim

2

�� ��� ximj j
 !

þ ximj j
( )

ð24Þ
To apply the calculated control velocities and execute the con-

trol action, the control velocities must be transformed into the cor-
responding motor control input. In the current scenario, the wheels
of the mobile robot are actuated by a stepper motor. The control
signal to the stepper motor is usually generated with the help of
a timer module. The timer count c used in the timer provides the
necessary delay between each step. This time delay Dt is given in
Eq. (25), where f is the frequency of the timer.

Dt ¼ c
f

ð25Þ

The linear velocity and angular velocity of the mobile robot,
which are calculated in Eqs. (23) and (24), are applied in Eq. (4)
in order to obtain the angular velocities x1i and x2i at which the
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right and left motors must rotate. Angles Dh1i and Dh2i, which
should be moved by each motor within the given time interval in
order to achieve the required linear velocity and angular velocity
of the mobile robot, can be found by multiplying the angular veloc-
ity of the wheel with the time interval, as shown in Eq. (26). Here,
Tlag is the time lag that may occur in calculating the required wheel
velocity.

Dh1i
Dh2i

� �
¼ x1i

x2i

� �
� T lag ð26Þ

However, the stepper motor can only move by a fixed angle (b)
in each step. This imposes restrictions on the wheel rotation; that
is, the wheels should rotate only if the required angle of rotation is
greater than b. To satisfy this restriction and to obtain smooth
motion without the effect of Tlag, the motor step command
(i.e., motion command) is generated with the help of a timer
interrupt-driven subroutine, as shown in Fig. 4, while the wheel
velocity calculation runs in the main control loop. This allows the
robot to move and update the posture (i.e., execute the previously
calculated velocity commands) while calculating the required
wheel velocity commands for the next instance. The timer is kept
such that it will operate at the maximum step frequency of the
stepper motor, which is 1 kHz in the present study. In the subrou-
tine, the calculated values of Dh1i and Dh2i are added, respectively,
to the unmoved angles h1(i�1) and h2(i�1) that were calculated in the
previous cycle of the subroutine. If the sum calculated using
Eq. (27) is larger than b, then stepper motor triggering occurs. This
triggering criterion is provided in Eq. (28), where T1i and T2i are the
triggering signals of the right and left motors, respectively. This
timer-driven motor step command generation ensures real-time
control of the robot.

h1
h2

� �
¼ h1ði�1Þ

h2ði�1Þ

� �
þ Dh1i

Dh2i

� �
ð27Þ
Table 1
Parameters used for simulation.

Parameter Symbol Value

Wheel track width wT 54 mm
Diameter of wheel dw 40 mm
Step size — 0.13 mm
Maximum motor velocity x1max, x2max 3.25 rad�s�1

Time delay Dt 1 ms
Reference linear velocity vri 40 mm�s�1

Reference angular velocity xri 0 rad�s�1

Minimum linear velocity vmin 0 mm�s�1

Minimum angular velocity xmin 0 rad�s�1

Table 2
Parameter range selected for optimization.

Parameter Symbol Range

Control gain parameter k1 0–5
k2 0–5
k3 0–5

Maximum linear velocity vmax 40–100 mm�s�1

Maximum angular velocity xmax 0–0.75 rad�s�1
T1i ¼
1; h1 � b

0; otherwise

�
and T2i ¼

1; h2 � b

0; otherwise

�
ð28Þ

After generating the signals to the motors, the value of the
unmoved angle is updated, as shown in Eq. (29):

h1i
h2i

� �
¼ h1

h2

� �
� T1i � b

T2i � b

� �
ð29Þ

Eqs. (26)–(29) are implemented in the step command generator
module of the control loop. The actual angular velocity of the
motor is calculated using Eq. (30):

x1i

x2i

� �
¼ 1

Dt
T1i � b
T2i � b
� �

ð30Þ

The new posture Pi+1 of the mobile robot, as given in Eq. (31), is
obtained by combining Eqs. (1) and (2). Here, the rate of change of
the posture is obtained by applying Eq. (30) in Eq. (3), in order to
obtain the actual velocities vi and xi of the mobile robot in the
given time interval, and then substituting the linear and angular
velocities into Eq. (2).

Piþ1 ¼
xiþ1

yiþ1

hiþ1

2
64

3
75 ¼

xi
yi
hi

2
64

3
75þ

_xi
_yi
_hi

2
64

3
75 � Dt ð31Þ

This equation is implemented in the posture estimation module
of the controller in order to find the instantaneous posture of the
mobile robot.
3. Simulation and optimization of control parameters

The multi-objective particle swarm optimization (MOPSO)
technique [20] was performed to select the control parameters,
such as the control gains (k1, k2, k3) and the maximum linear and
angular velocity limits (vmax, xmax) of the proposed controller, so
that the tracking errors would be minimal. The objectives of the
optimization were to minimize the average cross-track error and
the average linear velocity error of the mobile robot, while tracking
a step-shaped trajectory using the controller mentioned in the pre-
vious section. The cross-track error was calculated as the distance
from the mobile robot to the line connecting the current waypoint
with the previous waypoint. The linear velocity error is the differ-
ence between the measured velocity and the reference velocity
(vri). The optimization was carried out based on the simulation
results. In this simulation, these errors were calculated by simulat-
ing the trajectory that will be tracked by the mobile robot when
the proposed controller is used. The parameters used for the sim-
ulation are listed in Table 1. These parameters were selected based
on the specifications of a commercially available research platform
e-puck robot, on which the experiments were carried out. The
MOPSO algorithm performed 20000 evaluations to produce local
Pareto front of 50 particles. Each evaluation consisted of simulating
the trajectory tracked by the mobile robot for a particular set of
control parameters selected by MOPSO. The range within which
the control parameters were optimized is given in Table 2.

Fig. 6 shows the Pareto front produced with the help of the
MOPSO for the objective functions. To produce this Pareto front,
the MOPSO utilized the average linear velocity error and the aver-
age cross-track error calculated in the simulation. Each point on
the Pareto front represents a set of optimal parameters. The refer-
ence step-shaped trajectory and the simulated trajectory for an
optimized parameter set (k1 = 0.0247, k2 = 2.9671, k3 = 0.552, vmax

= 41 mm�s�1, xmax = 0.747 rad�s�1) selected from the Pareto front
is shown in Fig. 7. The point on the Pareto front corresponding to
this set is marked as (A) in Fig. 6.

Fig. 8 shows the linear velocity of the mobile robot while track-
ing the step-shaped trajectory during the simulation. The average
cross-track error and the average linear velocity error obtained
from this simulation were 2.63 mm and 2.62 mm�s�1, respectively.
These errors were calculated by taking the average of the error pro-
duced in each iteration during the simulation.



Fig. 6. Pareto front produced with the help of the MOPSO.

Fig. 7. Trajectory of the mobile robot when tracking the step-shaped reference
trajectory.

Fig. 8. Linear velocity of the mobile robot when tracking the step-shaped reference
trajectory.

Fig. 9. Photographic view of the instrumented experimental setup.
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4. Experimentation

4.1. Experimental setup

Fig. 9 shows the experimental setup, which consists of a mobile
robot in an indoor environment on top of a smooth platform that
was developed for the experiments. A vision-based measurement
system placed over the platformwas utilized to analyze the motion
of the mobile robot. This systemmeasures the linear velocity of the
mobile robot as well as the locus of the points through which the
mobile robot moved. The velocity of the mobile robot was limited
by user-defined restrictions: vmax = 41 mm�s�1, vmin = 0 mm�s�1,
xmin = 0 rad�s�1, and xmax = 0.747 rad�s�1. The selected control
gains for the experiment were k1 = 0.0247, k2 = 2.9671, and
k3 = 0.552. The point corresponding to this combination of control
gains was selected from the Pareto front by giving proper weigh-
tage to the average cross-track error and average linear velocity
error. The maximum velocity limits and control gains were
selected based on the optimization results explained in the previ-
ous section. The mobile robot uses the motor step count as a feed-
back signal. The control cycle consists of two parts—the control
loop and a timer interrupt subroutine—which was implemented
in a dsPIC30F6014A microcontroller system. The main control loop
calculates the required wheel velocity, based on the control strat-
egy developed in Section 2. The interrupt subroutine generates the
control command to the motors to rotate (step command genera-
tor module in Fig. 4) and calculates the new posture of the mobile
robot (position estimation module in Fig. 4). The control cycle was
5 ms, but the control signal to the motor was produced every
millisecond with the help of the timer interrupt (Tlag = 5 ms,
Dt = 1 ms). This strategy allows the mobile robot to move
smoothly, without any jerks occurring due to lag in the motor con-
trol signal. Since the motor control commands are generated every
millisecond, the mobile robot can be instructed to move at a linear
velocity of 130 mm�s�1, which is equal to 1000 steps�s�1.

The mobile robot was initially placed on the platform at a
known location and orientation (x0, y0, h0) = (200 mm, 200 mm, 0
rad). It was connected wirelessly to a computer, and the reference
trajectory to be tracked was communicated to the mobile robot
through this connection. These reference trajectories were com-
municated as a set of waypoints that connect to form the trajec-
tory. During the experiment, video of the mobile robot motion
over the platform was captured using the vision-based measure-
ment system. This video was post-processed to obtain the actual
linear velocity of the mobile robot and the trajectory tracked by
the mobile robot. These measurements were then compared with
the reference linear velocity and trajectory to determine the effec-
tiveness of the controller in tracking different trajectories. Self-
localization of the robot was carried out with the help of the pos-
ture estimation module in the control loop, as defined in Eq. (31) in
Section 2.
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4.2. Experimental results

Experiments were carried out to track three different trajecto-
ries: namely, a trajectory generated by a path planner, a rectangu-
lar trajectory, and a trajectory that resembles cursive script in
English. These trajectories were selected based on the different
applications this mobile robot may be used for (i.e., transportation,
manufacturing, human assistance). Fig. 9 shows the experimental
setup, with obstacles placed on the experimental platform. This
particular configuration was used to carry out experiments to track
the path-planner-generated trajectory. In the other two experi-
ments, these obstacles were not present.

4.2.1. Path-planner-generated trajectory
In a fully autonomous system, the path planner provides the

path that should be tracked by the mobile robot. Thus, in this
experiment, the mobile robot was controlled from a start position
(200, 200) to a destination position (700, 1400) and avoided obsta-
cles through a trajectory described by a set of waypoints generated
by a path planner. The PRM-based path planner implemented in
the computer connected to the mobile robot was utilized to gener-
ate the waypoints. The locations of the obstacles were manually
fed to the PRM to generate the waypoints. The algorithm provides
a set of waypoints that describe the reference trajectory. The way-
points were then communicated to the robot using the wireless
connection mentioned earlier in this section.

Fig. 10(a) and (b) shows the trajectory tracked by the mobile
robot and the linear velocity error, respectively. The average
cross-track error during the experiment was found to be
12.88 mm, and the average linear velocity error was found to be
1.24 mm�s�1. The average linear velocity error was minimal when
compared with the other trajectory-tracking experiments
explained in this paper. This was due to the closeness of the way-
points to each other and to a lower number of sharp turns in the
path. Sharp turns are difficult for the mobile robot to follow, due
to angular velocity constraints.

4.2.2. Rectangular trajectory
A rectangle with 400 mm of length and 300 mm of width was

tracked using the developed controller. The corner points of the
rectangle, at (200, 200), (600, 200), (600, 500), and (200, 500), were
selected as the waypoints. These waypoints were manually
Fig. 10. Path-planner-generated trajectory. (a) Trajectory
selected and passed to the robot through a wirelessly connected
computer. Fig. 11(a) shows the trajectory tracked by the mobile
robot and Fig. 11(b) shows the linear velocity error while tracking
the rectangular trajectory. The average cross-track error during the
experiment was found to be 6.75 mm, and the average linear
velocity error was found to be 2.91 mm�s�1.
4.2.3. Cursive script trajectory
An attempt was made to track a complex trajectory that resem-

bles cursive script in English. The waypoints in the trajectory were
generated through a user interface: A human operator used a
mouse to mark the waypoints corresponding to the text/path to
be followed by the mobile robot. An algorithm linked with the user
interface selected these waypoints and communicated them to the
mobile robot. The user interface was implemented on the com-
puter that was wirelessly connected to the robot. The text selected
in this case was the word ‘‘So.” This particular word was selected
because it provides a trajectory with no isolated points, and can
be tracked by the forward motion of the mobile robot. Fig. 12(a)
shows the trajectory tracked by the mobile robot and Fig. 12(b)
shows the linear velocity error while tracking the trajectory of
the cursive script. The average cross-track error was found to be
9.45 mm and the average linear velocity error was found to be
2.46 mm�s�1.

Table 3 provides a summary of the results. The results show
that the average cross-track error was highest for the path-
planner-generated trajectory (12.88 mm) and lowest for the
rectangular trajectory (6.75 mm). This finding contradicts the sim-
ulation results. The main reason for the differences between the
simulation results and the experimental results is that a wheel slip
occurred in the experiment that was not accounted for in the
model. Uncertainty in the start position and in the orientation of
the mobile robot when it was placed on the experiment platform
also contributed to these differences. The average linear velocity
error was lowest (1.24 mm�s�1) for the path-planner-generated
trajectory and highest for the rectangular trajectory (2.91 mm�s�1).
The linear velocity errors predicted in the simulation closely
matched those of the experiments. Although there was a mismatch
between the predicted and actual cross-track error, the errors were
small when compared with the specified trajectory, so the con-
troller was reliable.
tracked by the mobile robot; (b) linear velocity error.



Fig. 12. Cursive script trajectory. (a) Trajectory tracked by the mobile robot; (b) linear velocity error.

Fig. 11. Rectangular trajectory. (a) Trajectory tracked by the mobile robot; (b) linear velocity error.

Table 3
Summary of results.

Type of trajectory Total number
of waypoints

Experimentation

Average cross-
track error (mm)

Average linear
velocity error
(mm�s�1)

Path-planner-generated 28 12.88 1.24
Rectangular 4 6.75 2.91
Cursive script 43 9.45 2.46
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5. Conclusions

This paper addressed the control of a stepper motor-driven
Hilare robot to track trajectories described by a set of waypoints,
and explained the implementation of the controller on an actual
mobile robot. The conclusions are as follows:

(1) The major contribution of this work is that it extends the
adaptive control strategy to account for directional discontinuities
and velocity constraints when controlling a stepper motor-driven
mobile robot.

(2) The average cross-track error and the average linear velocity
error were reduced by optimizing the control parameters.
(3) The average cross-track error was found to be 12.88 mm for
the path-planner-generated trajectory, 6.75 mm for the
rectangular trajectory, and 9.45 mm for the cursive script
trajectory.

(4) The average linear velocity error was found to be less than
3 mm�s�1 for all the trajectories. This experimental result implies
that the proposed method is robust and reliable in tracking differ-
ent types of trajectories.

(5) The future work is toward reducing the cross-track error
and to integrate localization module to avoid error in self
localization.
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