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Wheatgrasses (Thinopyrum spp.), which are relatives of wheat (Triticum aestivum L.), have a perennial
growth habit and offer resistance to a diversity of biotic and abiotic stresses, making them useful in
wheat improvement. Many of these desirable traits from Thinopyrum spp. have been used to develop
wheat cultivars by introgression breeding. The perennial growth habit of wheatgrasses inherits as a com-
plex quantitative trait that is controlled by many unknown genes. Previous studies have indicated that
Thinopyrum spp. are able to hybridize with wheat and produce viable/stable amphiploids or partial
amphiploids. Meanwhile, efforts have been made to develop perennial wheat by domestication of
Thinopyrum spp. The most promising perennial wheat–Thinopyrum lines can be used as grain and/or
forage crops, which combine the desirable traits of both parents. The wheat–Thinopyrum lines can adapt
to diverse agricultural systems. This paper summarizes the development of perennial wheat based on
Thinopyrum, and the genetic aspects, breeding methods, and perspectives of wheat–Thinopyrum hybrids.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Food security is one of the most serious global challenges due to
the rapid growth of global population, climate change, and green-
house gas emissions [1,2]. The world’s population is estimated to
exceed 9.8 billion by 2050 [3]. In addition, the world’s marginal
lands, which are defined as low or non-profit farmlands, are cur-
rently estimated to cover an area of 3.68 � 107 hm2; these lands
occupy a large part of the global land mass and support over 50%
of the world’s population [4]. China, which feeds roughly 20% of
the global population with only 9% of the global farmland, sets a
‘‘bottom line” of about 1.2 � 108 hm2 of arable land for sustainable
and long-term food security. Unproductive agriculture (e.g., saline-
alkali soil, desertified soil, and low-rain-fed regions) is especially
common in western China. The arable land in China is primarily
concentrated in river valleys (e.g., the Yangtze River and Yellow
River) along the southern and eastern coasts, which contain a large
proportion of middle- and low-yielding farmlands [5–7].
Desertification and land degradation are serious issues in
China, as well as in other countries around the world. In 2015,
25% of the world’s croplands were estimated to be rapidly
degrading [8].

Common annual cereal crops, such as wheat (Triticum aestivum
L.), rice (Oryza sativa L.), and maize (Zea mays L.), are the major
sources of food grains for human consumption; however, the pro-
duction of annual monoculture crops exerts negative impacts on
the environment, including water pollution, soil erosion, reduced
carbon storage, increased greenhouse gas emissions, and large
amounts of fertilizer application [9]. Annual crops are more vulner-
able than perennial crops to soil erosion due to the lack of contin-
uous ground cover [10]. Nitrogen losses due to annual crops can be
30- to 50-fold higher than those caused by perennial crops [11].
The development of perennial crops that can exist for multiple
years in fields is one approach that has been taken by scientists
in order to improve food security. This article summarizes the pro-
gress that has been made in the development of perennial wheat
via interspecific hybridization and direct domestication, with an
emphasis on wheatgrasses (Thinopyrum spp.). The breeding meth-
ods, potential environmental benefits, and challenges of perennial
wheat are discussed.
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2. Agronomic and environmental benefits from perennial crops

A perennial plant is characterized by its ability to regrow after
harvest. Such plants usually provide more ground coverage and
have a longer growing season than annual crops; they also possess
an extensive root system in the soil. The environmental benefits of
perennial crops include reduction in soil erosion, protection of
water resources, minimization of nutrient leaching, increased
retention of carbon in the soil, and provision of a continuous habi-
tat for wildlife [12,13]. The economic benefits of perennial crops
include reduced expenses for seed and fertilizer (since the crop is
seeded once and harvested many times), and reduced costs for
weed control, tillage, and other cultural practices associated with
annual crops. Perennial crops can be used not only for food and
feed, but also for fuel and other nonfood bioproducts [14–17].
Potential perennial crops include perennial wheat [18,19], peren-
nial rice (Oryza rufipogon Griff.) [20–22], sorghum (Sorghum bicolor
(L.) Moench) [23], and common millet (Panicum miliaceum L.)
[1,24].

In addition to perennial wheat, weeping grass (Microlaena
stipoides (Labill.) R. Br.), a large-seeded native grass in Australia,
was used to develop perennial grain crops [25]. Some herbaceous
native legumes were shown to have potential as perennial grain
crops after domestication in Australia [26,27]. The commercial
grasses Microlaena stipoides and Distichlis palmeri (Vasey) Fassett
ex I. M. Johnst. were domesticated as perennial grain crops
[28,29]; however, these crops achieved limited success [30].
3. Utilization of wheatgrasses in the development of perennial
wheat

The major strategies used to develop new perennial crops are
domestication of wild perennial species and interspecific
hybridization between annual crops and perennial relative species.
Interspecific hybridization is preferred over direct domestication
because it combines the perennial growth habit with grain quality,
and reduces the time needed to develop perennial crops. The
majority of species in the tribe Triticeae are perennial, such as Aegi-
lops tauschii Coss., Agropyron cristatum Gaertn, Psathyrostachys
huashanica Keng, Pseudoroegneria spicata Pursh, Elymus scaber R.
Br., and Thinopyrum spp., and many of these species are able to
hybridize with common wheat [31,32]. Other grass species, such
as Australopyrum (Tzvekev) Á. Löve, are also regarded as potential
donor species of perennial growth habit [27]. Thinopyrum spp.
are attractive as perennial donors because of their genetic affinity
with Triticum spp. and their long history of study [32–34].

The genus Thinopyrum consists of about 11 species with a wide
range of genomic composition from diploids to autoallodecaploids;
examples include Th. elongatum D. R. Dewey (2n = 2x = 14), Th.
bessarabicum (Savul & Rayss) Á. Löve (2n = 2x = 14), Th. junceiforme
Á. Löve (2n = 4x = 28 or 2n = 6x = 42), Th. intermedium Barkworth &
D. R. Dewey (2n = 6x = 42), and Th. ponticum Beauv. (2n = 10x = 70).
These species have long been considered important genetic
resources for wheat improvement because species in the genus
collectively contain numerous genes for resistance to biotic (i.e.,
diseases and pests) and abiotic (i.e., salinity, drought, and extreme
temperatures) stresses [19,33,35–37]. Compared with other peren-
nial grass species, Thinopyrum spp. has desirable agronomic traits
including a large seed size (5.3 g per 1000 grain weight) and nutri-
tious grain [38–41]. Thinopyrum spp. produces more biomass than
annual wheat and is regarded as the most productive forage spe-
cies in the western United States [42,43]. Thinopyrum spp. also
has extensive root systems that are able to capture fertilizer and
significantly reduce nitrate leaching [19]. The grain quality of Th.
intermedium was reported to be similar to that of wheat, with a
high protein content and flour that performs well in baked prod-
ucts [44,45]. Larkin et al. [46] reported that wheat–Th. elongatum
and wheat–Th. intermedium derivatives were able to persist in
the field and produce grains for more than four years; however,
the yield tended to decline with time. The Rodale Institute (Kutz-
town, PA, USA) began to develop perennial grain in 1983 by
domesticating Th. intermedium after evaluating about 100 species
of perennial grasses [13,38,46,47].

4. Current status of breeding perennial wheat

Early attempts to hybridize wheat and wheatgrasses can be
dated back to the 1920s and 1930s, when scientists in the former
Union of Soviet Socialist Republics (USSR), the United States, Ger-
many, and Canada made crosses between wheat and wheatgrasses
[12,48–52]. The first wheat–Thinopyrum cross was made by Tsitsin
[51], who was aiming to develop perennial wheat; however, his
attempt failed. Nevertheless, those studies demonstrated that it
might be possible to directly introgress the genes conferring the
perennial growth habit into wheat through recombination or chro-
mosomal translocation. Early efforts to develop perennial wheat
were unsuccessful until the commercial release of the first peren-
nial wheat cultivar, Montana-2 (MT-2), in 1987 [53,54]. MT-2 was
developed by crossing durum wheat (Triticum turgidum L. var.
durum) and Th. intermedium at Montana State University in Boze-
man, MT, USA. Lammer et al. [55] reported that an additional pair
of chromosome 4E from Th. elongatum in Chinese Spring wheat was
associated with the ability to regrow after harvest; but the
regrowth was not as vigorous as that of the perennial amphiploid
progenitor. The perennial growth habit was reported to be a poly-
genic trait controlled by multiple genes, which would be not easy
to introgress from the perennial parents to an annual wheat culti-
var [12,13,27,56]. This is one of the difficulties in using Thinopyrum
spp. as the donor species for the development of perennial wheat
through interspecific hybridization. It is probably easier to transfer
the simply inherited domestication traits from wheat into existing
perennial species so that wild traits such as seed- and head-
shattering traits, indeterminate flowering, and larger kernels can
be improved [57]. This will make it possible to adapt the wild
perennial species to modern agricultural production. Significant
progress has been made in the direct domestication of several
perennial species including Th. intermedium at the Land Institute
(Salina, KS, USA). Twenty promising perennial wheat lines devel-
oped from a cross between wheat or durum wheat and Th. inter-
medium were grown and evaluated in nine countries around the
world [19,34]. In Australia, over 150 wheat �wheatgrass deriva-
tives originating from the wheat collections of Australia, the United
States, and China were evaluated for the ability to regrow after har-
vest and produce grain yield over multiple years. Several perennial
lines were able to produce grain over three successive years and
some lines were able to produce both forage and grain
[26,27,46,58]. Some perennial lines had dehydration tolerance
and were able to survive under severe water deficit in Australia
[46]. Perennial wheat was believed to have the potential to con-
tribute to the next substantial advance in wheat production in
Australia [27].

5. Hybridization between wheat and wheatgrasses in China

The wheatgrasses Th. intermedium and Th. ponticum have been
used for wheat improvement in China since the early 1950s [59].
Hybridization between wheat and Th. intermedium was initiated
by Shancheng Sun at Northeast Agricultural University in 1953
[60]. In subsequent studies, a large number of perennial wheat
lines were selected from the progeny of backcrosses between the
octoploid and hexaploid wheat–wheatgrass hybrids and wheat.



Fig. 2. Perennial wheat derived from the wheat � Th. intermedium cross in plots,
Dongyang, Shanxi Province, China.
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Hybrids derived from crosses of the diploid Th. elongatum (2n =
14) with common wheat exhibited weak regrowth in the dry and
cold conditions of Shanxi Province; consequently, the hexaploid
Th. intermedium (2n = 42) or octoploid wheat–Th. intermedium lines
(2n = 56) were preferred as the donors of perennial growth habit.
F1 plants from the crosses between octoploid wheat–Th. inter-
medium hybrids and durum wheat–Th. intermedium hybrids usu-
ally exhibited vigorous regrowth and were able to survive for at
least three years in the field, with some being able to survive for
seven years; however, the F1 generation had low seed-setting rates
of 24.0% on average. The F2 to F4 generation progeny was segre-
gated into three types based on morphological characteristics:
common wheat types, intermediate (Tritielytrigia) types, and for-
age/wheatgrass (resembling the Th. intermedium parent) types
(Fig. 1). The seed-setting rates of the hybrids improved in advanced
generations, and reached 65.4% and 64.7% for the F2 and F3 gener-
ations, respectively [61]. Genomic in situ hybridization (GISH) anal-
ysis demonstrated that the perennial wheat–Th. intermedium lines
12–480, 12–787, 12–1150, and 12–1269 had 50–56 chromosomes
that were composed of 8–14 Th. intermedium chromosomes, and
were able to survive in the field for more than two years (unpub-
lished data from Yu Sun). These lines were also tall (115–146
cm) and tolerant to cold (–20 �C), and they had multiple spikelets
(20–61) along with a high protein and nutrient composition (Figs. 2
and 3). These lines are promising genetic resources for the develop-
ment of forage perennial wheat. In addition, several perennial
wheat lines were resistant to the cereal cyst nematodes Heterodera
avenaeWollenweber and H. filipjevi (Madzhidov) Stelter, and to the
fungal pathogens Puccinia striiformis Westend f. sp. tritici and
Blumeria graminis (DC) E.O. Speer f. sp. tritici emend. É. J. Marchal
(the causal agents of wheat stripe rust and powdery mildew,
respectively), and were thus valuable resources for improving
resistance in wheat to these diseases. In addition to perennial per-
formance, wheat–Th. intermedium partial amphiploids, such as the
‘‘Zhong” series, possess multiple resistances to other pests and
pathogens including wheat streak mosaic virus and its vector, the
wheat curl mite (Aceria tosichella Keifer), barley yellow dwarf virus,
eyespot (caused by Oculimacula yallundae (Wallwork & Spooner)
Crous & W. Gams and Oculimacula acuformis (Boerema, R. Pieters
& Hamers), and the cereal cyst nematode (Heterodera spp.)
[32,36,62]. Zhao et al. [56] developed perennial wheat lines from
the cross octoploid Trititrigia � Th. intermedium, which exhibited
Fig. 1. Morphology of spikes from the F2 plants of a wheat � Th. intermedium cross.
A is Th. intermedium, B–J are different progeny spikes of the hybrid, and K is wheat
cultivar Jinmai 47.

Fig. 3. A hill of the perennial wheat line derived from the wheat � Th. intermedium
cross in Dongyang, Shanxi Province, China.
vigorous regrowth and was well-adapted to the cold environment
of Heilongjiang Province. Crosses between wheat and tall wheat-
grass, Th. ponticum, were made in 1956 and used mainly for com-
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mon wheat improvement, resulting in the release of a series of
wheat cultivars that included Xiaoyan 6 [63].

6. Breeding methods of perennial wheat

Domestication of wild Triticum relatives is one approach to
develop a perennial wheat, and several orthologous genes that
contribute to domestication traits and the improvement of annual
crops have been identified in this process [13,24,64,65]. For exam-
ple, grain weight is controlled by the same gene GW2 in rice,
wheat, and maize [66,67]; flowering time is controlled by the
VRN1 gene in wheat, barley (Hordeum vulgare L.), and ryegrass
(Lolium perenne L.) [68]; and glutinous grain is controlled by GBSSI
orWaxy genes in wheat, barley, maize, and sorghum [13]. Selection
and introduction of these genes may speed the development of
perennial wheat using marker-assisted selection (MAS) or gene
transfer during long-term selection. Scientists at the Rodale Insti-
tute (Kutztown, PA, USA) and Land Institute (Salina, KS, USA) have
been working on the domestication of the perennial grass Th. inter-
medium since 1983 [12,34,38]. They have developed several acces-
sions with an increased harvest index and reduced plant spread
compared with the donor, Th. intermedium.

The domestication or development of perennial wheat is time-
consuming and includes the following steps: ① evaluating wild
relative species and determining which have the greatest poten-
tial; ② creating the initial population by crossing candidate peren-
nial donors to desirable commercial wheat resources with
promising agronomic performance; ③ selecting desired lines until
the genes or loci for domestication and agronomic traits are fixed;
and④ testing materials extensively over several years, followed by
the release of potential lines [13,65]. During this process, agronom-
ically desirable plants can be used as parents for hybridization.

Wild relatives often perform poorly for agronomic traits due to
the genetic complexity of some traits and the linkage of desirable
and undesirable traits such as late flowering, small seed size, and
seed shattering. Thinopyrum spp. and other perennial species in
the tribe Triticeae can be hybridized with commercial wheat culti-
vars to combine the perennial growth habit with the productivity
of wheat [69]. Breeding methods, such as pedigree selection, back-
crossing, and recurrent selection, can be applied to remove the
deleterious traits while maintaining the perennial trait [13,45].
Early generation selection (F2 to F4) should emphasize traits such
as seed size, plant height, self-fertility, and chromosome constitu-
tion. Stable chromosome counts should also be prioritized [13,24].
The selection in later generations should focus on traits such as
grain yield and quality, disease resistance, and robust post-
harvest regrowth [70–72]. In addition to several generations of
trait selection, emphasis should be placed on the genetic changes
in the newly developed alloploid lines in order to ensure accom-
modation between the alien genomes and the wheat genomes
[30]. Fertility and stability must be considered during the process
of developing perennial wheat. Beyond considerations of ploidy
and genetic compatibility, perennial wheat lines might not exhibit
a regrowth ability in environments other than the one in which
they were selected due to differences in climate (precipitation
and temperature), soil, and pathogens that affect the fitness of
individual lines [13,30].

7. Genetic research on perennial wheat

Thus far, the genes that confer the perennial growth habit have
not been identified. Studies have shown that some of the attributes
of the perennial growth habit are present when extra chromo-
somes from perennial donors are added to wheat [55,73–76].
Potentially perennial wheat lines that show vigorous regrowth
usually contain a group of chromosomes from their perennial
parents, and those that survived for multiple years under field con-
ditions required at least one genome from Th. intermedium [18,58].
Our results are consistent with previous studies that indicate that
some perennial wheat lines had 54–56 chromosomes, with 12–14
chromosomes originating from Th. intermedium (unpublished data
from Yu Sun). With an increase in wheatgrass chromosomes and
decrease in wheat chromosomes, the hybrids may exhibit a vigor-
ous perennial habit; however, there is no evidence as to what per-
centage of chromosomes from wheatgrass species will ensure a
strong perennial growth habit. Progeny lines with fewer wheat
chromosomes often exhibit severe genetic instability and are more
like the grass parent in their growth habit. Assessment of the
effects of complete genomes using advanced generations is not
possible because of chromosome elimination. Scientists at the Land
Institute (Salina, KS, USA) are trying to understand how many
wheat and Th. intermedium genomes will improve the performance
of the perennial growth habit by developing a series of full amphi-
ploids with different genomic constitutions by crossing diploid,
tetraploid, and hexaploid Triticum species with Thinopyrum spp.
[13,24,34,58]. The alien chromosomes in the partial amphiploids
usually consist of chromosomes from different genomes [35]. This
mixture of chromosomes or synthetic genome in the partial
amphiploids may cause poor fertility and loss of the perennial
donor chromosomes. Chromosomes from different genomes of
Thinopyrum spp. can be discriminated by GISH analysis using the
S (or St) genomic DNA from Pseudoroegneria stipifolia (Czern. ex
Nevski) Á. Löve or Pseudoroegneria strigosa (M. Bieb) Á. Löve based
on different banding patterns [35,54]. For example, the perennial
wheat cultivar MT-2 consists of A, B, D, E, and St genomes, and
variation in chromosome composition was detected within and
among the MT-2 lines. This perennial cultivar was composed of a
mean chromosome content of 26.2 wheat + 9.4 St + 18.8 E + 1.5
St/E translocation [54]. Chen et al. [77] reported that the genome
of MT-2 included 10 chromosomes from the St genome, eight from
the Js genome, and 13 from the J genome. Some researchers advo-
cated the use of the diploid wheatgrass species (e.g., Th. elongatum)
as the perennial donor, resulting in an amphiploid hybrid with
AABBEE (similar to hexaploid triticale, AABBRR) or AABBDDEE
(analogous to octoploid triticale, AABBDDRR) when using tetra-
ploid wheat or hexaploid wheat as parents, respectively
[13,46,58]. The recovery of full fertility, high yields, and promising
regrowth may require multiple generations of selection.

Determining the role of cytoplasm in developing perennial
wheat by interspecific hybridization is necessary because many
studies have indicated an interaction between the nucleus and
cytoplasm during wide hybridization [76,78,79]. Since it is incom-
patible with wheat cytoplasm, the gene (or genes) conferring the
perennial growth habit from Thinopyrum spp. may be eliminated
or silenced [34].

8. Challenges and opportunities

The rapid development of next-generation sequencing (NGS)
techniques enables the production of high-quality reference geno-
mic sequences for many crops and plant species, which may pro-
vide useful information for accelerating the breeding of perennial
wheat. It is possible to deal with large and complex genomes (both
diploid and polyploid) by taking advantage of NGS. Th. intermedium
is an allohexaploid species (2n = 6x = 42, StStJsJsJJ) with a genome
size of 12.6 Gb, the majority of which (ca. 80%–90%) contains repet-
itive sequences [13]. Recently, Zhang et al. [80] optimized the
genotyping-by-sequencing (GBS) technology for Th. intermedium
and identified many genome-wide markers across the genome of
Th. intermedium without a reference genomic sequence. Kantarski
et al. [81] developed the first integrated genetic map of Th. inter-
medium with 21 linkage groups, including 10 029 GBS markers
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and covering 5061 centimorgans (cM) using seven populations.
This consensus map displayed high collinearity with the barley
genome and would be useful for a better understanding of the
genetic control of the perennial growth habit in Th. intermedium
and increase the efficiency of genomic selection on the improve-
ment and domestication of Th. intermedium. High-throughput phe-
notyping platforms based on field performances provide precise
phenotypic data for dissecting the genetic controls of perennial
traits, as well as those of agronomic traits, which increases the
effectiveness of domestication and development of perennial crops
[13,82].

Further research is needed to identify the underlying mecha-
nism of the perennial growth habit and to integrate the genes
responsible for better agronomic performance. In Australia, a
well-adapted perennial cultivar is expected to be released by
2030 [46]. By crossing wheat with the partial amphiploids of
perennial wheat–Th. intermedium hybrids, we have developed
many lines with promising perennial performance, large biomass,
and good seed fertility that have potential as forage cultivars.
These perennial wheat lines are adapted to different areas in
the Xinjiang Uygur and Ningxia Hui Autonomous Regions of
China; however, the adaptability of some perennial wheat lines
needs to be improved since many of them flowered late, pro-
duced few seeds, and yielded poorly. Perennial grains will need
to be profitable if they are to be adopted widely in agriculture
[83]. The availability of perennial wheat with robust regrowth,
cold-hardiness, and drought tolerance that meets the needs of
and benefits farmers is limited. Like other newly emerged crops,
perennial wheat should be cultivated first in marginal fields at
the edge of agricultural areas before it becomes a more produc-
tive, mainstream crop. The end-use purpose of perennial wheat
must be considered to be to act as a breeding target during the
development and improvement of this new crop [84]. Additional
concerns about perennial crops include their potential to become
serious weeds and the possibility that they may serve as a ‘‘green
bridge” for certain pathogens, thus increasing the risk of disease
epidemics [85].

The advance of modern genomic approaches that are being used
in common wheat, as well as in other well-adapted annual crops,
will benefit the development of perennial wheat. Integrative tech-
niques that combine genome-wide markers, powerful statistical
tools, and phenotypic assessment platforms have revolutionized
the cultivated crop breeding and domestication of perennial
wheatgrasses. In view of the complex inheritance and time-
consuming selection for perennial growth habit, high-throughput
genotyping based on genomic approaches and phenotyping tech-
niques will increase the efficiency of selection accuracy [86–89].
Genomics-based speed-breeding techniques that allow multiple
generations of crop production per year [90] will reduce the
breeding-cycle time and accelerate the improvement of existing
perennial lines and the domestication of perennial wheatgrasses.

9. Concluding remarks

Given the increasing concern about food security in the face of
an increasing global population, increased risks from climate
change, and losses in arable land due to development and soil
degradation, perennial wheat offers a promising new approach to
increase food production and diversify agroecosystems. The devel-
opment of perennial wheat cultivars that can be planted once and
harvested many times would provide new options, especially for
marginal and low-productivity situations. Perennial wheat that
produces a high biomass yield with low input would benefit farm-
ers by allowing them to cultivate marginal lands using perennial
wheat as forage or bioenergy feedstock. Perennial crops may serve
different purposes in different situations. Continued research
toward the development of adapted perennial wheat cultivars is
necessary to ensure success. Wheat–Th. intermedium amphiploids
and/or partial amphiploids have demonstrated good perennial per-
formance in multiple environments. Modern high-throughput
genotyping and phenotyping technologies, in combination with
speed-breeding techniques, should accelerate the development of
perennial wheat cultivars.
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