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Wheat grown under rain-fed conditions is often affected by drought worldwide. Future projections from
a climate simulation model predict that the combined effects of increasing temperature and changing
rainfall patterns will aggravate this drought scenario and may significantly reduce wheat yields unless
appropriate varieties are adopted. Wheat is adapted to a wide range of environments due to the diversity
in its phenology genes. Wheat phenology offers the opportunity to fight against drought by modifying
crop developmental phases according to water availability in target environments. This review summa-
rizes recent advances in wheat phenology research, including vernalization (Vrn), photoperiod (Ppd), and
also dwarfing (Rht) genes. The alleles, haplotypes, and copy number variation identified for Vrn and Ppd
genes respond differently in different climatic conditions, and thus could alter not only the development
phases but also the yield. Compared with the model plant Arabidopsis, more phenology genes have not yet
been identified in wheat; quantifying their effects in target environments would benefit the breeding of
wheat for improved drought tolerance. Hence, there is scope to maximize yields in water-limited envi-
ronments by deploying appropriate phenology gene combinations along with Rht genes and other impor-
tant physiological traits that are associated with drought resistance.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cereals constitute a prime global human food source. Among
them, wheat (Triticum aestivum L.) ranks as the secondmost impor-
tant food after rice, and is the most widely cultivated cereal in the
world. It is one of the central pillars of food security, supplying 20%
of total calories and a similar portion of total protein to the world’s
population [1]. The average global wheat yield is 3.3 t�hm�2;
however, it varies widely, with regional averages ranging from
1.7 t�hm�2 in Australia to a potential of up to 9 t�hm�2 in other
parts of the world (data from FAOSTAT database 2015 [2]). The
yield penalty is usually due to different environmental stresses
that reduce yield potential by 69.1% [3]. In most developed
countries, wheat is mainly grown in rain-fed marginal land, where
inadequate and erratic rainfall limits the yield (Table 1) [4].
Drought is a key stress that constrains wheat production on about
6.5 � 107 hm2 of land worldwide [5] and reduces yield by up to
50% [6]. Modeling exercises have revealed that water stress in mar-
ginal wheat-growing environments reduces 50%–90% of their yield
potential under irrigated conditions [7]. In 2012, the overall global
wheat production decreased by 1.4%, mainly due to severe drought
in the United States, Europe, and central Asia (data from FAOSTAT
database 2013 [2]). The Australian wheat yield dropped by 46% in
2006 compared with the yield trend of the previous 50 years,
resulting in billion dollar losses for the wheat industry (data from
FAOSTAT database 2012 [2]).

The impact of future drought episodes on wheat production is
expected to increase due to the effects of climate change on tem-
perature and precipitation. It is estimated that the 1 �C increase
of temperature that has occurred during the last 29 years has
resulted in a 6% reduction of wheat yield compared with the
expected yield without global warming effects [8]. According to
the Fifth Assessment Report of the Intergovernmental Panel on Cli-
mate Change (IPCC), the global mean temperature will increase by
3.7 �C by the end of this century, with incidents of hottest days and
coolest nights occurring 50% more frequently than at present [9].
Changes in the precipitation pattern coupled with increasing tem-
perature would affect the major crop production of the world, and
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Table 1
Major wheat producers of the world: five year (2008–2012) averages of production,
area harvested, and area irrigated for wheat [4].

Country/Region Production (t) Area harvested
(107 m2)

Area irrigated
(107 m2)

Australia 24.51 13650 —
Canada 26.22 9200 —
China (mainland) 116.15 24110 —
France 38.37 5540 30.24
India 84.36 28640 —
Pakistan 23.40 8860 7335.00
Russian 52.19 24090 —
Turkey 19.99 7980 —
Ukraine 20.34 6480 46.90
USA 60.91 20060 1662.00
World 678.02 220400 13241.50

Fig. 1. Drought shield: complementary approaches to sustain wheat yield in water-
limited environments. WUE: water-use efficiency; RUE: radiation use efficiency.
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wheat production could decline by 23.2%–27.2% by 2050, unless
protective measures for limiting global warming or appropriate
cultivars and crop management practices are adopted [10]. Wheat
production in low-latitude sites would be more vulnerable with
the rise of a 3–5 �C temperature scenario, compared with produc-
tion in high latitude regions, and yields could decline by up to 40%
with an increase of 2 �C in temperature [11]. In Australia, wheat
belts are typical of those in a Mediterranean climate: most precip-
itation occurs in winter, followed by less-frequent rain in spring
and hot dry summer. Thus, water stress in spring is the major fac-
tor limiting yield improvement in these regions and often coin-
cides with stem elongation, flowering, and grain filling [12]. In
these environments, terminal heat often combines with drought
during the grain-filling period and further limits grain yield [13].
In their Fifth Assessment Report, the IPCC predicted that an
increase in mean annual temperature by 2.2–5 �C with +5% to
�30% change in precipitation patterns will result in the expansion
of drought-affected areas by 5.4%, 4.6%, and 3.8% by 2030, 2050,
and 2070, respectively [9]. In this situation, plant breeders must
be well-prepared to embrace the challenges of climate change
and to feed the world by developing varieties that are better
adapted to water-limited environments. Better utilization of the
available genetic resources of wheat is essential in order to main-
tain and maximize wheat yield potential in water-limited environ-
ments, and the optimization of phenology is one of the most
effective ways to achieve this goal.

Phenology is the key factor for crop adaptation to a particular
environment. A proper understanding of the genetic control of
phenological traits will enable breeders to develop crops that are
better adapted to a specific environment. It is well documented
that yield loss due to drought depends on the growth stage at
drought occurrence, as well as the duration and intensity of the
stress [14,15]. Spike development, from terminal spikelet initiation
to anthesis, is the most important phase in determining grain yield,
as it has been observed that a heavier spike at anthesis is positively
correlated with grain yield [16] and can be manipulated without
affecting other phases [17]. Therefore, adverse effects of drought
could be minimized by ensuring that the most sensitive develop-
mental stages do not occur during stress periods [18]. Hence,
fine-tuning of flowering and the duration of developmental phases
are advocated for better adaptation of wheat in water-limited envi-
ronments or to escape from these constraints [19–22]. Phenology
genes also regulate the physiological development of wheat [23],
and some morpho-physiological traits have been identified as
effective in breeding drought-adaptive varieties [24,25]. Taking
account of many important traits and their interactions in stress
environments, a sound understanding of the genetic control and
physiological basis of drought tolerance would facilitate the
improvement of yield in water-limited environments. We
acknowledge the importance of good agronomic practices, that is,
management, and several other traits involved in physiological
mechanisms to reduce adverse effects of drought; however, this
review focuses on the phenology genes as one of the most impor-
tant measures to avoid drought stress (Fig. 1). Therefore, an effort
has been made to summarize the progress achieved to date on key
phenology genes and the integration of this knowledge in breeding
new varieties that are adapted to future climate change. Moreover,
an attempt has been taken to compile information on molecular
markers for the identified alleles of vernalization (Vrn) and pho-
toperiod (Ppd) genes that will help in evaluating the cultivars that
are adapted to target environments as well as marker-assisted
breeding.

2. Phenology genes

Wheat is adapted to a wide range of agricultural environments
[26]. The synchrony of flowering to a wider range of climatic con-
ditions is largely controlled by ① Vrn genes (exposure to cold tem-
perature requirement), ② Ppd genes (photoperiod sensitivity), and
③ autonomous earliness per se (Eps) genes [27]. Hence, the adap-
tation of a genotype to a particular environment depends on the
interaction of these three groups of genes.

2.1. Vernalization genes

Vernalization promotes the switching of the plant vegetative
phase to the reproductive phase by inducing floral primordia from
leaf primordia in the shoot apical meristem [28,29]. In wheat, three
genes determine the vernalization requirement: Vrn1, Vrn2, and
Vrn3 [30–32]. The three orthologous Vrn1 genes—Vrn-A1, Vrn-B1,
and Vrn-D1—are located on the long arms of the homoeologous
chromosomes 5A, 5B, and 5D, respectively, in common wheat,
and mainly control the vernalization requirement [30,31,33,34].
The Vrn2 gene is also located on the long arm of 5A; and Vrn3 is
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located on the short arm of chromosome 7B [32,35–37]. Winter
wheat varieties require a certain period of cold to induce flowering,
whereas varieties that flower without vernalization are referred to
as spring types. The dominant alleles of Vrn-A1, Vrn-B1, Vrn-D1, and
Vrn3 are responsible for the spring growth habit; thus, a dominant
allele at any of the three Vrn1 loci confers a spring type. On the
other hand, Vrn2 is dominant for the winter type and is epistatic
to dominant alleles of Vrn1 [31,37–39]. Vrn2 is a floral repressor
that delays flowering, but vernalization under long days sup-
presses the expression of Vrn2 and enhances the expression of
Vrn1 [40]. Multiple alleles of Vrn1with different levels of responses
to vernalization and effects on flowering have been identified
(Table 2) [41–55], and have an adaptive value [56–61]. The extent
of flowering depends on the basal level of Vrn1 expression [62];
some alleles of Vrn1 are expressed without prior cold treatment,
thus allowing flowering without vernalization [36,62,63]. Muta-
tions in the promoter or deletion in the first intron of the Vrn1 gene
cause expression of Vrn1 without vernalization, and the alleles
lacking the larger section are more active during earlier flowering
without vernalization [36,44,45,64,65]. On the other hand, vari-
eties of wheat and barley flower early without vernalization when
they lack a functional copy of the Vrn2 gene [31,37]. The Vrn3 gene
also expresses at a high level when Vrn2 is absent, and active alle-
les of Vrn3 accelerate flowering irrespective of day length or ver-
nalization [32]. Thus, five loci of Vrn genes influence flowering by
controlling the vernalization requirement of wheat cultivars in dif-
ferent parts of the world [30,32,66,67].

2.2. Photoperiod genes

Wheat is a long day plant, requiring exposure to long days
(> 14 h light) for flowering, whereas photoperiod-insensitive
varieties flower early in short days (10 h or less light) [54,68,69].
This photoperiod sensitivity is controlled by the semi-dominant
Table 2
Current status of the identified alleles for Vrn1 and Ppd1 loci.

Gene Allele Sequence variation from wild type

Vrn-A1 Vrn-A1a 231-bp and 140-bp insertions in the promoter
Vrn-A1b 20-bp deletion in the promoter region of comm
Vrn-A1c 7222 bp deletion in intron 1
Vrn-A1d 32-bp deletion in the promoter region of tetrap
Vrn-A1e 54-bp deletion in the promoter region of tetrap
vrn-A1 Wild type

Vrn-B1 Vrn-B1a 6850 bp deletion in intron 1
Vrn-B1b 6850 bp and 36 bp deletion in intron 1
Vrn-B1c 817 bp deletion and 432 bp duplication in intro
vrn-B1 Wild type

Vrn-D1 Vrn-D1a 4235 bp deletion in intron 1
Vrn-D1b C replaced by A at translation site in CArG-box
vrn-D1 Wild type

Ppd-A1 Ppd-A1a1 1085 bp deletion in the promoter region
Ppd-A1a2 1027 bp deletion in the promoter region
Ppd-A1a3 1117 bp deletion in the promoter region
Ppd-A1a4 684 bp deletion in the promoter region
ppd-A1b Wild type

Ppd-B1 Ppd-B1a.1 308 bp insertion in the promoter region
Ppd-B1a.2 Four copies of Ppd-B1
Ppd-B1a.3 Three copies of Ppd-B1
Ppd-B1a.4 Two copies of Ppd-B1
Ppd-B1e —
ppd-B1b Wild type

Ppd-D1 Ppd-D1a.1 2089 bp deletion in the promoter region
Ppd-D1a.2 5 bp deletion in exon 7
ppd-D1b.1 Wild type
ppd-D1b.2 Insertion of transposable element in the intron
homoeologous Ppd1 gene on the short arm of chromosome group
2; as is the case with Vrn1, the dominant allele confers photoperiod
insensitivity [70–74]. The effects of the photoperiod-insensitive
allele Ppd were studied thoroughly by Worland [22] over a 14 year
period in different wheat-growing regions; their work revealed
that insensitive Ppd1 advances flowering time by 9–15 days, and
that this earliness can be utilized to obtain yield advantages in
water-limited environments by drought avoidance. The early Ppd
gene also has some pleiotropic effects including reduced plant
height and number of tillers, and fewer spikelets per ear [73]. How-
ever, an increase in spikelet fertility can compensate for the yield
penalty [74]. It is clear that Ppd insensitivity brings forward the
time of terminal spikelet formation, thus advancing the flowering
time by reducing the number of spikelets in the ear. However, it
does not influence the rates of leaf and flower primordial produc-
tion. There is also variation among the potency of three Ppd1a loci,
where plants with Ppd-A1a and Ppd-D1a are earlier in flowering
than plants with Ppd-B1a [52]. In the same way that a number of
Vrn1 alleles have been identified, a number of alleles and their hap-
lotypes have also been identified recently for all three homoeolo-
gous loci of the Ppd gene (Table 2) in both bread and durum
wheat [49,51,53–55,75]. These findings have a great agronomic
importance for deployment in breeding programs.

2.3. Earliness per se genes

The Eps genes control flowering time independent of tempera-
ture and photoperiod. To date, very few Eps genes have been iden-
tified in wheat, but several quantitative trait locus (QTL) studies
revealed that most of the chromosome groups carry such genes
and that they are present as QTL effects rather than as major genes
in the Ppd and Vrn pathways [74,76–81]. The Eps genes are
involved in the fine-tuning of flowering time [82], and hence can
be utilized for adaptation to specific climatic conditions.
Response to light/temperature Ref.

region of common wheat Insensitive [44]
on wheat Insensitive [44]

Insensitive [45]
loid wheat Insensitive [44]
loid wheat Insensitive [44]

Sensitive [44]

Insensitive [45]
Insensitive [46]

n 1 Insensitive [47]
Sensitive [45]

Insensitive [45]
of wild type Facultative [48]

Sensitive [45]

Insensitive [49]
Insensitive [20]
Insensitive [50]
Insensitive [51]
Sensitive [50]

Insensitive [49]
Insensitive [52]
Insensitive [52]
Insensitive [52]
— [53]
Sensitive [52]

Insensitive [54]
Intermediate [55]
Sensitive [54]

1 Sensitive [55]
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3. Molecular intervention of phenology genes

In concordance with studies on Arabidopsis, important progress
has been made at the molecular level to elucidate the flowering
pathway in wheat. Molecular and sequence analysis revealed that
Vrn1 encodes a MADS-box transcription factor similar to the Ara-
bidopsis meristem identity genes APETALA1 (AP1), CAULIFLOWER
(CAL), and FRUITFULL (FRU), which regulate the shoot apical meris-
tem to determine the transition from vegetative to reproductive
development [36]. Insertions, deletions, and mutations in the
promoter region are associated with allelic variation of Vrn1 [44].
Following this finding, a series of molecular markers have been
Table 3
Polymerase chain reaction (PCR) markers for the different vernalization and photoperiod

Allele Primer Primer sequence

Vrn-A1a VRNA1F GAAAGGAAAAAT
Vrn-A1b
Vrn-A1c VRN1-INT1R TGCACCTTCCC(C
vrn-A1
Vrn-A1 BT706 CATTGTTCCTTCC

BT750 ATTACTCGTACAG
Vrn-A1c (Langdon) Ex1/C/F GTTTCTCCACCGA

Intr1/A/R3 AAGTAAGACAAC
Vrn-A1c (IL 369) Intr1/A/F2 AGCCTCCACGGT

Intr1/A/R3 AAGTAAGACAAC
vrn-A1 Intr1/C/F GCACTCCTAACCC

Intr1/AB/R TCATCCATCATCA

Vrn-B1a Intr1/B/F CAAGTGGAACGG
Intr1/B/R3 CTCATGCCAAAAA

vrn-B1 Intr1/B/F CAAGTGGAACGG
Intr1/B/R4 CAAATGAAAAGG

Vrn-D1 Intr1/D/F GTTGTCTGCCTCA
Intr1/D/R3 GGTCACTGGTGG

vrn-D1 Intr1/D/F GTTGTCTGCCTCA
Intr1/D/R4 AAATGAAAAGGA

Vrn-D1a VRN1DF CGACCCGGGCGG
VRN1-SNP161CR AGGATGGCCAGG

Vrn-D1b VRN1DF CGACCCGGGCGG
VRN1-SNP161AR AGGATGGCCAGG

Vrn-3 FT-B-INS-F CATAATGCCAAG
FT-B-INS-R ATGTCTGCCAATT

vrn-3 FT-B-NOINS-F or
FT-B-NOINS-F2

ATGCTTTCGCTTG
GCTGTGTGATCTT

FT-B-NOINS-R CTATCCCTACCGG

Ppd-D1a Ppd-D1_F ACGCCTCCCACTA
Ppd-D1_R2 AND CACTGGTG

ppd-D1b Ppd-D1_F ACGCCTCCCACTA
Ppd-D1_R1 and GTTGGTTCAAACA

16 bp deletion in exon 8 Ppd-D1exon8_F1
Ppd-D1exon8_R1

GATGAACATGAA
GTCTAAATAGTAG

Ppd-B1 Ppd-B1exon3SNP_F1 AGACGATTCATTC
Ppd-B1exon3SNP_R1 TCTGAATGATGA
Ppd-B1_2ndcopy_ F1 TAACTGCTCGTCA
Ppd-B1_2ndcopy_R1 CCGGAACCTGAG

5 bp deletion in exon 7 D5-1F GAATGGCTTCTCC
D5-1R GATGGGCGAAAC
D5-2F GTGTCCTTTGCGA
D5-2R TTGGAGCCTTGCT

A TE insertion in intron 1 D520F AGGTCCTTACTCA
D520R CTCCCATTGTTGG
D78F CCATTCGAGGAG
D78R CTGAGAAAGAAC

Truncated Ppd-B1 gene in the
‘‘Chinese Spring” allele

219H05F2 TAACTGCTCCTCA
97J10R2 CCGGAACCTGAG

Intact Ppd-B1 copies in the
‘‘Chinese Spring” allele

Ppd-B1_F25 AAAACATTATGCA
Ppd-B1_R70 CAGACATGGACT

Intact Ppd-B1 copies in the
‘‘Sonora64”/”Timstein” allele

Ppd-B1_F31 CCAGGCGAGTGA
Ppd-B1_R36 GGGCACGTTAAC
developed (Table 3) [32,44,45,48,52,54,55,83,84] and successfully
utilized to identify allele frequency of the local wheat cultivars as
well as these from the International Maize and Wheat Improve-
ment Center (CIMMYT) collection [45,83,85,86]. The Vrn2 encodes
a zinc finger-CCT domain transcription factor and is a floral repres-
sor, down-regulated by both vernalization treatment and short day
length [37]. Vrn2 plays a very similar role to that of FLOWERING
LOCUS C (FLC) in Arabidopsis but actually has no orthologs, suggest-
ing an independent evolution of the vernalization pathways [87].
Vernalization gene Vrn3 is similar to Arabidopsis FLOWERING LOCUS
T (FT), and the dominant allele is associated with a retro element
insertion in the Triticum aestivum L. (TaFT) promoter, results in
response alleles.

(50–30) Annealing
temperature
(�C)

Product size Ref.

TCTGCTCG 50 965 and 876 [44]
714

/G)CGCCCCAT 734
734

TGTCCCACCC 63 1431 [84]
CCATCTCAGCC
GTCATGGT 55.6 522 [45]
ACGAATGTGAGA
TTGAAAGTAA 58.9 1170
ACGAATGTGAGA
ACTAACC 56 1068
AGGCAAA

TTAGGACA 58 709
TTGAAGATGA
TTAGGACA 56.4 1149
AATGAGAGCA

TCAAATCC 61 1671
TCTGTGC
TCAAATCC 61 997
ACGGAGCG
CACGAGTG 65 612 [48]
CCAAAACG
CACGAGTG
CCAAAACT

CCGGTGAGTAC 63 1200 [32]
AGCTAGC
CCATCC or
GCTCTCC

57 1140 or 691

CCATTAG

CACTG 54 288 [54]
GTAGCTGAGATT
CACTG 54 414
GAGAGC
ACGGG
GTACTAGG

52 320 or 326 and 22,
257, 69, and 22

CGCTCC 55 471, 328, and 155
TACACCATG
CAAGTGC 55 425 and 475
GATCATC
TGGTC 50 1032 or 1027 [55]
CTTATT
ATCCTT 53 184 or 179
TCATCT
TACTCAATCTCA 50 2612
TGTTGTTA
ACGATTCAT 55 1005
AGAGTCAA
CAAGTGC 56 425 [52]
GATCATC
TATAGCTTGTGTC 58 994

CGGAACAC
TTTACACA 58 223
ACACCTTT



Table 3 (continued)

Allele Primer Primer sequence (50–30) Annealing
temperature
(�C)

Product size Ref.

Vrn-A1b Vrn-P2 CCTGCCGGAATCCTCGTTTT 63 147 or 167 [83]
CTACGCCCCTACCCTCCAACA

Vrn-B1b Vrn-P7 CCAATCTCACATGCCTCCAA 59 215 or 252
ATGCGCCATGAACAACAAAG

Vrn-B3c Vrn-P14 GCTTTGAACTCCAAGGAGAA 52 1401
ATAATCAGCAGGTGAACCAG

vrn-B3/Vrn-B3 Vrn-P15 ACTCATCATCACCACTTCCT 51 1499
TAATGCTTAATTCGTGGCTG

Vrn-B3 promoter Vrn-P16 GTCCATACAAATCATGCCAC 51 491
TTCTGACAGTTTTAGTTGCG

Vrn-B3 promoter Vrn-P17 GCTTTCGCTTGCCATCCCAT 62 898
GCGGGAACGCTAATCTCCTG

Vrn-B3 promoter — TTTGAGACAGGAGATTAGCG 53 1131
ACCATCATGAGGCACCATTA
GCTTTGAACTCCAAGGAGAA 52 1425
ATAATCAGCAGGTGAACCAG
CCGTTCACCATCTATTGCTC 55 1259
CACCCAAATCCTTCATCTCA

Vrn-B3-RT — GGAGGTGATGTGCTACGAGA 55 147
TTGTAGAGCTCGGCGAAGTC

y Edwards IB–personal communication.
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early flowering [32]. Recent screening of a set of Chinese wheat
cultivars led to the discovery of two more dominant alleles of
Vrn3, and 80 days variation in heading has been observed due to
their action [83]. Allelic variations of these Vrn1 genes quantify
the vernalization effects, and determine flowering time by inter-
acting with photoperiod gene Ppd1. The latter is a member of a
pseudo response regulator (PRR) gene family in which insensitivity
is associated with deletion or transposon insertion within the pro-
moter region, as well as with copy number variation [52,54]. In
wheat, Ppd1 directly regulates the FLOWERING LOCUS T1 (FT1);
mutants with promoter deletions result in the overexpression of
FT1, causing early flowering [51]. Markers have been developed
to identify the Ppd mutants with different promoter deletions
(Table 2) that will facilitate their effects on the flowering time of
wheat [49,51,53,54].

The complicated interaction of these phenology genes has
resulted in two conflicting models of the flowering regulatory net-
work: The first model, designated as Vrn2 to FT [88], recommends
that Vrn2 represses FT expression but that vernalization during
winter slightly up-regulates Vrn1, causing down-regulation of
Vrn2 and the release of FT expression. This FT then interacts with
Ppd1 and again up-regulates the Vrn1 beyond the threshold to ini-
tiate flowering under long day length [89]. By contrast, the second
model, known as FT to Vrn2, was proposed by Shimada et al. [90],
who suggested that Vrn1 promotes FT transcription, which down-
regulates Vrn2 to initiate flowering based on the fact that the main-
tained vegetative phase (mvp) mutants lacking Vrn1 fail to up-
regulate FT. Subsequent detailed experimentation by Distelfeld
and Dubcovsky [88] with the mvp mutants segregating for Vrn1
and Vrn2 deletions resulted in evidence to contradict both of the
previously proposed models; we therefore suggest that more
investigation should be conducted to elucidate the flowering net-
work of wheat, and that doing so may lead to the identification
of more genes that interact in the flowering pathway.

4. Dwarfing genes

The introduction of dwarfing (Rht) genes into cereals, including
wheat, was a key driver of the green revolution. Since then, Rht-B1b
and Rht-D1b (previously known as Rht1 and Rht2, respectively) are
the most commonly adopted Rht genes in wheat-breeding pro-
grams throughout the world [91]. Together, these two semi-
dwarfing genes produce the dwarf phenotype, whereas alone in
combination with their counterpart Rht-B1a or Rht-D1a, they pro-
duce semi-dwarf plants in nature. The plants with these genes
are less prone to lodging and are more effective in partitioning
assimilates to the grain. Some researchers have suggested that
the improved yield potential of such varieties is only limited to a
favorable growth environment [92,93]. However, these specific
Rht genes are insensitive to endogenous gibberellins, and produce
shorter plants with smaller cells [94]. These smaller size cells are
consequently responsible for the shorter coleoptile length, less
early vigor, smaller leaf area, lower water-use efficiencies, and
poor seedling establishment, especially in water-limited environ-
ments [95–99]. The insensitivity to gibberellins of both the
Rht-B1b and Rht-D1b alleles is due to single nucleotide substitu-
tions that create a translational stop codon, TGA, reducing the
plant’s ability to respond to gibberellins [100].

Most of the world’s wheat is grown without irrigation; because
of the dependence on seasonal rainfall, the potential yield is often
hampered by water scarcity. About 50% of rainwater can be lost
directly through soil evaporation, whereas early vigor can increase
water-use efficiency by 25% and thus improve yield [101–104].
Again, deep sowing of longer season varieties is often recom-
mended to obtain yield benefits in dry areas, such as those occur-
ring in southern Australia, but seedling establishment is impaired
when dwarf/semi-dwarf varieties are sown more than 5 cm deep
[96]. Consequently, farmers wait until the first rains before sowing,
resulting in between 140 and 330 kg yield loss per week per hec-
tare being reported in Australian wheat crops [105,106]. Wheat
varieties with longer coleoptiles are able to emerge sooner when
sown deep, and have greater early vigor [107,108]. Moreover, early
vigor and longer coleoptiles help plants to avoid the phytotoxic
effects of residual herbicides, compete against weeds, and reduce
evaporative water loss by shading. Hence, breeding for vigorous
seedling growth and breeding for longer coleoptiles are the prime
objectives for the better adaptation of wheat in water-limited envi-
ronments [109–111]. A project with these objectives is currently
underway at the CIMMYT in Mexicoy.
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On the other hand, a number of Rht genes such as Rht 7, Rht 8,
Rht 9, Rht 13, and Rht 14 have been reported, which have potential
in reducing plant height without affecting seedling vigor and tissue
response to gibberellins [112–114]. Under stress conditions, taller
varieties store assimilates in the stem and do not depend entirely
on current assimilation for grain filling [115]. Several studies
across many favorable and unfavorable environments demon-
strated that plants with heights of 70–100 cm are better yielders
than those that are taller or shorter than this range [97,116]. There-
fore, the accumulation of minor Rht genes or combination with one
of the gibberellins insensitive genes for shorter plant height are
desirable [116,117], as shown by different studies that used Rht8
and/or Rht13 alleles with Rht1 and/or Rht2 to maximize yields
compared with other dwarf/semi-dwarf varieties [91]. Markers
linked to these Rht alleles make it easier to select both alleles
simultaneously across a large population [118,119].

5. Physiological aspects of phenology and dwarfing genes

Grain yield is strongly influenced by the timing of developmen-
tal stages in a particular environment, making crop phenology a
critical component for yield physiology [120]. Moisture stress at
the reproductive stage, especially that period from a few weeks
before anthesis to a few days after anthesis, has the most critical
effect on crop yields in water-limited environments [25,121]. Pas-
sioura [122] emphasized the importance of water use, water-use
efficiency, and harvest index (HI) for crop yields in dry areas. In
dry environments, an important portion of soil moisture that could
be available for transpiration is evaporated from a barren soil sur-
face, thus indirectly affecting dry matter accumulation by limiting
water availability to roots, and modifying canopy temperature
[123]. In this situation, faster early seedling growth is beneficial
to prevent evaporation by shading. Moreover, late-flowering culti-
vars continue to produce tillers until they receive the signal for
reproductive development, and many of them cannot produce fer-
tile spikes, but put pressure on the available soil moisture through
normal transpiration. In this regard, heading date and effective til-
ler number should be additional considerations for improving
water-use efficiency in varieties being developed for drought envi-
ronments. Moreover, water requirement varies throughout the
growth period and is higher during seed setting and development
stages. Hence, there is an opportunity to improve yield through
changes in crop development. The synchronization of crop devel-
opmental stages by phenological adjustment with seasonal mois-
ture availability should be the most important target for new
wheat varieties being developed for water-limited environments
such as those that occur in Mediterranean climate regions.

HI and ultimately final grain yield largely depend on pre- and
post-anthesis biomass production, mobilization of assimilates to
florets, and the pattern of water supply during the life cycle
[111,124]. One strategy for raising the HI may be increasing the
assimilate movement to developing florets, which will prevent flo-
ret abortion before anthesis. This can be done by increasing the
duration of spike growth with a reduction in the earlier period
for larger ear development [16]. Moreover, this larger ear will also
contribute more photosynthate during grain filling along with the
flag leaf, thereby increasing the HI. Studies on two alternative
spring alleles of Vrn-A1 have shown their significant influence on
the variation in root and vegetative morphology such as rosette
growth habit, plant height, and leaf length [125]. A significant rela-
tion has recently been observed between the duration of pre-
anthesis growth phases and the tillering and dry matter accumula-
tion [126]. A detailed study of Australian wheat cultivars over sev-
eral years and a wide range of locations has revealed that cultivars
with one spring allele in any of the three Vrn1 loci are the earliest
in heading when compared with cultivars having two spring alleles
[127]. Again, spring alleles in all three Vrn1 loci have very small
effects in forwarding the heading date, which suggests the pres-
ence of epistatic or overdose effects. This study also showed that
Vrn-B1 has a weaker effect on the reduction of heading time com-
pared with Vrn-A1 or Vrn-D1. Recently, however, it has been shown
that Vrn-B1 has the greatest effect on grain yield [128].

Semi-dwarf varieties with Rht-D1b are advantageous over
Rht-B1b in environments with high maximum temperatures and
lower rainfall during the flowering and grain-filling periods, as
Rht-D1b is associated with less leaf porosity in plants relative to
Rht-B1b, leading to slow transpiration before heading and leaving
more soil moisture for later use [128,129]. Plants reduce their
water use during drought stress by means of accelerated leaf
desiccation and death, which causes a reduction of current
photosynthate [130–133]. As a result, stem reserves become an
important source of carbohydrate for grain filling [134–136].
However, Rht-B1b and Rht-D1b genes reduce stem reserves by
35% and 39%, respectively [137]; hence, taller varieties often
perform better in stress environments when there is a shortage
of assimilates, compared with the modern dwarf cultivars.

6. Future strategies

Difficulties in the identification and precise measurement of key
physiological determinants of yield is the bottleneck in the
improvement of drought tolerance in plants, and its complex
genetic control makes progress more difficult [138–140]. Hence,
the improvement of plant traits at both physiological and molecu-
lar levels is vital in order to address this complex issue.

The current use of automated high-throughput plant-
phenotyping facilities greatly assists researchers in phenotyping
plants more precisely and accurately. An in-depth understanding
of plant physiology will help dissecting the genetic components
of drought tolerance, while molecular and genomic tools will help
to identify candidate genes and QTLs for drought-tolerance traits.
The integration of physiology with molecular tools will provide
new insights into gene function. To optimize output in drought
research, a detailed knowledge of the growing environment and
of genotype-environment interactions is essential. Fine-tuning a
genotype to a specific environment is possible by combining the
best-suited alleles of phenology genes to adapt better in the exist-
ing environment.

Recent studies have revealed that copy number variation of
phenology genes also plays a vital role in crop adaptation. An
increased copy number of Ppd-B1 confers earlier flowering, and
an increased copy number of Vrn-A1 requires a longer vernaliza-
tion period and is thus associated with late flowering [52]. A sim-
ilar investigation for the copy number variation of Ppd-B1 in
Australian wheat cultivars resulted in the identification of five alle-
les with one to four copies as well as a null copy of Ppd-B, where
plants with an allele with a lower copy number were the latest
in heading relative to plants with an allele having more copies
[53]. In addition, the haplotypes variation identified in other stud-
ies for these genes was found to affect several yield-contributing
parameters, and thus adaptation to different environments
[51,55]. As a result, several attempts have been made to determine
the value of the alleles of Vrn1 and Ppd1 genes over the past few
years in the local environments of different countries
[52,55,68,73,83,84,86,127,128,141]. In most cases, the plant mate-
rial did not cover all the available alleles present in nature, or even
the same allele in different genetic backgrounds. Thus, obtaining
the true effect of an allele in breeding a variety will warrant the
development of appropriate near-isogenic line (NIL) populations
of the locally adapted cultivars with different alleles, which will
require significant effort. An earlier example of a successful
attempt is Triple Dirk, which was developed by Pugsley [30] to
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study the alleles of the Vrn1 gene; at present, the John Innes Center
in the UK is performing substantial research in developing this
type of population for different Ppd1 alleles. Such efforts will cer-
tainly advance research into phenology genes in optimizing plant
development and productivity in local water-limited environ-
ments. Therefore, intensive and thorough research to optimize
the effect of each allele/haplotype of the phenology genes would
enable plant breeders to determine the basic genetic architecture
of wheat in each key growing environment, for better yields under
stress conditions. Thus, once molecular and physiological tools are
used to identify and prove the efficiency of different traits and their
regulating genes for drought tolerance, these various useful traits
could be aggregated in the base population through a marker-
assisted gene pyramiding scheme, as demonstrated by Servin
et al. [142]. In summary, success against the adverse effects of cli-
mate change relies on the consequences of proper characterization
of target environments (i.e., soil properties, precipitation pattern,
drought severity, and etc.); and then on designing an appropriate
crop ideotype that combines useful phenology with other
drought-tolerance-attributing genes, along with good manage-
ment practices.

7. Conclusion

Drought is a major threat to world agriculture, and is predicted
to worsen in the near future due to climate change. Wheat is the
most widely grown cereal crop in the world and is vital for global
food security. Altering the developmental stages and maturity of
wheat is one of the best ways to combat drought without compro-
mising yield. However, current knowledge about the number of
genes that control flowering and maturity in wheat is limited.
Based on knowledge obtained from the model plant species Ara-
bidopsis, in which more than 80 genes have been reported to con-
trol flowering, it is logical to conclude that many new genes and
genetic pathways for wheat flowering and maturity are yet to be
discovered. However, the fact is that different genetic pathways
finally converge, interact, and ultimately lead to the activation of
floral identity genes in the floral primordia [143], and these inter-
acting networks that promote flowering are yet to be unveiled. As
significant research efforts are currently underway, knowledge on
wheat-flowering genes and pathways will increase over time and
will require advances in computational biology in order to inte-
grate and interpret this information. In addition, future interna-
tional collaboration will help to combine the cumulative efforts
of the research underway in different research groups and disci-
plines; the challenge for the breeders will be to integrate this work
into new genetic combinations.
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