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Heterodera glycines (i.e., soybean cyst nematode, SCN) is the most damaging nematode pest affecting
soybean crop worldwide. This nematode is managed by means of crop rotation with selected resistant
sources. With increasing reports of virulent SCN populations that are able to break the resistance within
commonly used sources, there is an increasing need to find new sources of resistance or to broaden the
resistance background. This review summarizes recent findings about the genes controlling SCN resis-
tance in soybean, and about how these genes interact to confer resistance against SCN in soybean. It also
provides an update on molecular mapping and molecular markers that can be used for the mass selection
and differentiation of different resistance lines and cultivars in order to expedite conventional breeding
programs. In-depth knowledge of SCN parasitism proteins and soybean resistance responses to the
pathogen is critical for the diversification of resistant sources through gene modification, gene stacking,
or incorporation of novel sources of resistance through backcrossing or genetic engineering.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Soybean (Glycine max (L.) Merr.) is considered to be one of the
oldest crops cultivated by humans [1]. It is believed to have origi-
nated in China, probably in the northern and central regions [2].
Some evidence indicates that soybean was domesticated as early
as 3500 BCE [3], and was subsequently introduced into Korea
around200 BCE and into Japan andRussia around300CE [1]. Annual
world production of soybean is approximately 104.5 billion USD.

In 1899, damage to soybean from soybean cyst nematode (SCN,
Heterodera glycines) was described in China as ‘‘fire-burned
seedlings” [3]. Since the plant originated in China, and as the
nematode caused ‘‘fire-burned seedling” disease in that country
before much dissemination of the cultivated crop had occurred,
China is believed to be the origin of the nematode. SCN continues
to affect soybean production in China, with yield losses estimated
at more than 120 million USD [4–7], and is now reported in many
countries where soybean is produced. SCN was first observed in
1915 in Japan [8] and later in the United States [9], where it causes
annual yield losses of more than 1.2 billion USD [9–11]. SCN is now
present throughout South America.
The most common sources of resistance to SCN that are used in
crop rotation in the northern central United States include
PI 88788, PI 54840 (Peking), and PI 437654 [12,13]. Unfortunately,
due to the continuous use of these resistant sources, more virulent
forms of SCN have evolved over time. The virulence phenotypes of
SCN populations have been described as race based on four soy-
bean genotypes [14]. A system of HG Type (HG represents the first
letters of the genus and species names of the nematode, Heterodera
glycines) was subsequently developed in order to determine the
virulence of SCN populations; the system used seven soybean indi-
cator lines with various forms of resistance because race is inap-
propriate for characterizing diverse, heterogeneous populations
of SCN [15]. There is an increasing evidence of SCN populations
that are able to overcome resistance [16–18]. Hence, the need to
diversify the resistant sources or broaden the resistance back-
ground in elite soybean germplasm is increasing, as more SCN pop-
ulations adapt to break the resistance in PI 88788 [19–23].

2. Molecular adaptation to obligate parasitism

Heterodera glycines, like other cyst nematodes, is an obligate
root parasite that has complex and intimate interactions with its
hosts. The motile, second-stage juvenile (J2) in soil invades the root
of soybean plants using its stylet. The J2 then moves intracellularly
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through the root cortical cells toward the stele, where an initial cell
is induced to form a syncytium through the secretions from the
esophageal gland cells. Feeding commences, and after three suc-
cessive molts, the J2 becomes an adult. The syncytium is a meta-
bolic sink that serves as a feeding site and provides the nutrients
required for development into adulthood [24]. The nematode com-
pletely depends on the syncytium for its survival, which means
that the destruction or death of the syncytial cell will result in
the death of the nematode.

Molecular studies have established that secreted proteins from
the esophageal gland cells of the nematode are crucial to this
intimate relationship [25,26]. Virulence genes (ror) from SCN that
enable its reproduction on resistant soybean cultivars were
reported in a classical genetic study [27]. Meanwhile, a number
of cellulase and pectate lyases [28–32] have been characterized
in SCN before and after infection of soybean roots. These cellulases
probably function to soften root tissues, since they are present in
infective juveniles that are invading root tissues and in males that
need to exsheath the third stage cuticle and exit the roots [30];
other genes from SCN, such as guanylyl genes, may function in
chemosensory recognition [33].

A chorismate mutase (CM) gene from SCN showing polymor-
phism has been characterized [34]. This enzyme is found in the
shikimate pathway of plants and does not exist in animals. It could
alter one or more of the downstream products of the shikimate
pathway that may perform a role in syncytia maintenance. A
secreted CLAVATA3/Embryo surrounding region-related (CLE) pep-
tide homologous to the CLAVATA3 ligand, with signal peptides that
induce cell division in plants (protoplasts), was present in this
nematode [35]. Recently, a CLE peptide from SCN (HgCLE) was
found to interact with soybean CLE receptors in an in vitro study,
and silencing of the receptors increased resistance to SCN [36].

Other genes recently identified in SCN include a biotin synthase
and a putative solubleN-ethylmaleimide-sensitive factor activating
protein receptor (SNARE) domain gene [37]. A SNARE-bearing pro-
tein HgSLP-1 could interact with the soybean N-ethylmaleimide-
sensitive factor attachment protein a (a-SNAP) to trigger defense
response in an incompatible interaction. HgSLP-1 seems to be
absent, suggesting its role as an avirulent SCN protein. Thus, inter-
action between HgSLP-1 from an avirulent SCN and Rhg1 a-SNAP in
soybean triggers a resistance response [37]. Although biotin is
involved in several cellular processes in plants, the question of what
the nematode biotin is doing in the plant is yet to be determined.
However, it is speculated that amino acid differences in biotin
between avirulent and virulent SCN may help in ascertaining its
function [37]. In addition, three novel ran-binding protein genes
containing signal peptides at the N-terminal and B30.2 and spla
kinase and ryanodine receptor (SPRY) domains at the C-terminal
have been cloned and characterized from Heterodera glycines.
RNAi-mediated silencing of Hg-rbp-2 resulted in suppression and
parasitic ability of the nematode [38].

It is clear that the molecular details of SCN parasitism on
soybean and the mechanism of soybean resistance are not well
understood; however, such knowledge is critical in finding novel
strategies to engineer resistance.
3. Compatible interactions

When the nematode is able to successfully infest and reproduce
on its host, the interaction is termed to be compatible. In this case,
the infective J2 is able to invade the soybean plant root, penetrate
and migrate through the root epidermis and cortical cells, and con-
tinue to the stele, where syncytial cell induction, development, and
maintenance occur. Penetration and migration through the epider-
mis and cortical cells are both mechanical [39] and enzymatic [29].
Secretions from the amphids, gland cells, and inner labial sensilla
form a short tube between the stylet and the syncytium [40–42].
The stylet protrudes in and out of the intact feeding plug during
feeding [26]. Consequently, the soybean responds by gene expres-
sional modifications and cellular changes, especially within the
affected cells [43,44].

At first, the cytoplasm of the syncytial cell becomes dense,
accompanied by increased ribosome and rough endoplasmic retic-
ulum (RER) numbers [42]. The cell wall gradually dissolves through
openings in affected cell walls. Plasmodesmata of the initial cell
expand, leading to the fusion of protoplasts of contiguous cells
and, ultimately, to the dissolution of cell walls, resulting in a
multinucleate feeding cell (syncytium) with increased metabolic
activity. The cytoplasm becomes dense with increased organelles
and cell wall ingrowths [45,46]. There is thickening of the cell wall,
and the main cell vacuole is replaced with many secondary
vacuoles [42]. Cell wall dissolution is greater in cells that are more
distant from the initial syncytial cell, whereas cell wall thickening
is more extensive in cells that are closer to the initial syncytial cell
[47]. Parenchyma cells may undergo hyperplasia, whereas cells
distal to the syncytium undergo hypertrophy. It is not known
whether the nuclei within the syncytium ever replicate. The nema-
tode then feeds and molts three more times before becoming an
adult (Fig. 1(a) and (b)). The female lays eggs, which are fertilized
by the males in order to begin a new generation of compatible
relationship.
4. Incompatible interactions

In incompatible interactions, the J2 invades and penetrates into
the root and induces the formation of the syncytium; however,
shortly after establishment, the syncytium becomes necrotic and
degenerated, leading to the death of the nematode (Fig. 1(c) and
(d)). The length of time it takes for necrosis formation and, ulti-
mately, syncytium death depends on the host plant [48]. The
nuclear degeneration and necrosis are the results of a hypersensi-
tive reaction (Fig. 1(e)) [45,48,49]. Resistance response rapidity
varies in different sources of resistance: Rapid syncytium degener-
ation was observed in Peking, whereas in PI 88788 and PI 209332,
syncytial death is slow [48,50–52]. Most syncytia initiated in the
soybean cultivar Peking stop developing and become necrotic
within 5 days after inoculation (DAI) [53], probably beginning with
dilation of the RER at as early as 2 DAI [52]. By 5 DAI, cell wall
appositions form alongside necrosis of the developing syncytium
[50,54]. Also, by 4–5 days after initiation, the following cellular
changes occur: development of irregular thickenings of syncytial
cell walls with appositions, and development of cell wall ingrowths
and invagination of plasmalemma with numerous microtubules in
the cytoplasm [41,42]. Development of irregular cell wall thicken-
ings, cell wall appositions, cell necrosis, and degeneration of nuclei
were observed in PI 437654, in a resistance response similar to that
of Peking [55].

The initial syncytial cells produced in soybean cultivars from
PI 88788 or in cultivars derived from these sources have extensive
accumulation of cisternae and RER [42] without thickened cell
walls, appositions, or a necrotic layer, which typically occur with
the resistance responses in Peking [42]. Intriguingly, the cell walls
of the non-syncytial cells surrounding the developing syncytium
become necrotic, as does the entire syncytium by 8–10 DAI
[50,54]. This is followed by nuclear degeneration and the formation
of chromatin-like materials within the syncytial cell cytoplasm.

In general, the demise of syncytia in an incompatible interac-
tion may be attributed to nuclei degeneration, cell wall apposition
formation, non-functional endoplasmic reticulum, and pro-
grammed cell death [53]. However, gene expression changes in



Fig. 1. Compatible and incompatible interactions between soybean and SCN, Heterodera glycines. (a) J2 inside a susceptible host (Kent) root 48 h after inoculation and
(b) 8 days after inoculation (DAI); (c) J2 inside a resistant host (Peking) root 48 h after inoculation and (d) 8 DAI; (e) image of a root of the resistant soybean cultivar Forrest
showing hypersensitive response (HR)-like cell death at the site of feeding by infective SCN J2, which are stained pink with acid fuchsin (N). (Images (a–d) are courtesy of
B. Mathews, United States Department of Agriculture; image (e) is courtesy of Xiaohong Liu, University of Missouri)
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degenerating syncytia in PI 88788 and Peking suggest a genotype-
specific gene expression, albeit with a conserved transcriptional
background [56], which implies that the mechanism of SCN resis-
tance in soybean may be related, yet distinct, in different cultivars.

5. SCN-resistance genes described in soybean

Classical genetic studies have revealed that soybean resistance
to SCN is conditioned by both the recessive genes designated as
rhg1, rhg2, and rhg3 [57] and the dominant genes designated as
Rhg4 and Rhg5 [58,59]. Subsequent studies suggest that this inter-
action is more complicated and involves both major and minor
genes [60]. Advancement in genetic marker technology in the last
two decades has tremendously aided the identification, localiza-
tion, and characterization of major quantitative trait loci (QTL)
controlling soybean resistance to SCN [16,61–64]. The results of
many QTL experiments have shown that the genetic regions of
Rhg1 and Rhg4 contribute most of the SCN resistance (Fig. 2)
[65], so the molecular markers linking these regions were identi-
fied in order to select these loci in soybean lines [63,66,67].

The Rhg1 gene mapped onto soybean chromosome 18 shows
incomplete dominance. This gene plays a significant role in SCN
resistance [16]. Different Rhg1 alleles exist among different resis-
tant sources [68]. About 90% of SCN-resistant sources in the United
States use the rhg1-b allele. Rhg4, on the other hand, is mapped
onto chromosome 8 and is dominant, and may be required for
complete resistance in some resistant sources [68].
To further refine the Rhg1 and Rhg4 loci and to characterize can-
didate genes involved in SCN–soybean interaction, integrated
approaches such as functional genomics tools, soybean genome
sequencing, map-based cloning, mutagenesis, targeting induced
local lesions in genomes (TILLING), and gene-silencing technolo-
gies have aided very intriguing discoveries in the last decade
[51,69–74]. In particular, the discovery that a portion of the
rhg1-b gene encodes three proteins—namely, an amino acid
transporter (AAT), an a-SNAP, and a wound-inducible domain
protein (WI12)—that contribute to SCN resistance in soybean was
ground-breaking (Fig. 3) [75]. A single copy of this 31 kb portion
of rhg1-b is found in susceptible cultivars, but multiple copies are
found in resistant cultivars (Fig. 3). An increased number of copies
of this segment results in increased expression of the gene in resis-
tant cultivars. In addition, overexpression of these genes in suscep-
tible cultivars produced some level of SCN suppression [75]. It is
important to note that this result suggests that SCN resistance in
soybean is conditioned not only by the presence or absence of
the resistance locus Rhg1, but also by the copy number variation
in a repeated 31 kb multi-gene segment at the rhg1-b locus. Other
studies have also shown that the role of Rhg1 and Rhg4 in SCN
resistance is independent of the leucine-rich repeat receptor-like
kinase (LRR-RLK) associated with their QTL loci [74,76–78]. Inter-
estingly, none of the genes in the repeat in the 31 kb multi-gene
segment bears a resemblance to a classical plant resistance gene
with a nucleotide-binding site–leucine-rich repeat (NBS-LRR)
domain, suggesting a novel form of resistance in plants [76,78].



Fig. 2. (a) High-density genetic map of the chromosomal segments carrying the Rhg1 and Rhg4 loci, and (b) their presence or absence in resistant and susceptible soybean
(Glycine max) pools. MLG: molecular linkage group; Ln.g.: linkage group. (Adapted from Ref. [65])

Fig. 3. Fiber-fluorescence in situ hybridization (FISH) detection of Rhg1 copy number variation in widely used soybean lines: Probe diagram and composite of four fiber-FISH
images (four DNA fibers) per genotype, revealing 10 or 3 direct repeat copies of the 31 kb Rhg1 segment in SCN-resistant Fayette and Peking, and 1 copy per Rhg1 haplotype in
SCN-susceptible Williams 82. The white bars stand for 10 mm, which corresponds to approximately 32 kb using a 3.21 kb�mm�1 conversion rate. (Adapted from Ref. [75])
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Current studies have confirmed that copy number variation, dif-
ferences in gene sequence, and differences in methylation of the
repeat segment mediate SCN resistance in soybean [79–81]. Based
on these discoveries, soybean resistance has been grouped into high
and low copy number accessions that have varying numbers of
copies of the 31 kb portion of Rhg1 [23,79]. Thea-SNAP allele in sus-
ceptible cultivarswas reported to be different from thea-SNAP alle-
les in resistant cultivars in the C-terminal domain [79,80]. In
addition, three different forms of a-SNAP proteins were observed
among resistant lines with varying numbers of repeats, suggesting
that the copy number and sequence of the a-SNAP protein in the
Rhg1 play active roles in soybean resistance to SCN [80]. While mul-
tiple copies of a-SNAP from PI 88788-type resistance (GmSNAP18)
simultaneously contribute to the rhg1-b resistance [75], the
Peking-type GmSNAP18 alone at rhg1-a, together with Rhg4, confers
resistance to SCN at the locus [23]. Recently, genetic analysis
revealed that GmSNAP11 serves as a novel minor resistance gene
that contributes to an additive resistance against SCN [82].

Furthermore, a map-based cloning experiment showed that the
Rhg4 locus contributing to resistance in Peking encodes a predicted
cytosolic serine hydroxymethyltransferase (SHMT) that differs
from the susceptible form in sequence [74]. Missense mutations
that convert arginine (R) to proline (P) and tyrosine (Y) to aspara-
gine (N) within the vitamin B6 binding sites of SHMT may be
critical for its function in SCN resistance. These amino acid poly-
morphisms may be responsible for the discrepancies in enzyme
activity between the different forms of SHMT [74,83,84]. Recent
findings indicate that SCN-resistant accessions that contain a low
copy of Rhg1 require Rhg4 for resistance [80]; however, it is not
known how the two loci interact to confer resistance at the molec-
ular level [23]. Rhg1 in Peking requires simultaneous expression of
Rhg4 in order to be functional, suggesting that epistasis may be
involved in Peking-derived SCN resistance [68,74]. It has been
shown that rhg1-a Peking-type GmSNAP18 is sufficient for resis-
tance to SCN in combination with Rhg4, which reiterates the func-
tional divergence of Peking-type GmSNAP18 in SCN resistance from
that of GmSNAP18 in PI 88788 [85]. Mutations on the SHMT
revealed key residues for structural stability, ligand binding,
enzyme activity, and protein interactions, thus providing com-
pelling genetic evidence that SHMT is essential in conferring effec-
tive SCN resistance in Peking-type resistant cultivars, irrespective
of whether a resistant Rhg1 allele is carried.
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6. Understanding the mechanism of SCN resistance in soybean

Even though several genetic, cytological, and molecular-
mapping studies have aided the identification and characterization
of genes contributing to SCN resistance in soybean, there is still a
great deal to learn regarding the molecular mechanism underpin-
ning SCN resistance. At present, two types of SCN resistance in
soybean have been established, namely, PI 88788-type resistance
and Perking-type resistance. Both types of resistance are mediated
by two major QTL loci carrying the genes Rhg1 and Rhg4. SCN resis-
tance in PI 88788 requires only the rhg1-b allele to be functional;
however, resistance in Peking requires both the rhg1-a and Rhg4
alleles [16,23,85,65]. It is also known that in Peking-type resis-
tance, there is a rapid and potent localized hypersensitive response
that affects SCN J2, whereas in PI 88788-type resistance, the
resistance response is more prolonged, and affects the SCN third-
and fourth-stage juvenile. A comparison of the two types of SCN
resistance in soybean is provided in Table 1 [1,8,14–17,30,49,51,53,
55,56,68,69,72,76,80,81,83,86].

The conundrum that remains to be resolved is the role, if any,
played by rhg1 and rhg4 alleles in the up- or down-regulation of
several genes during SCN–soybean incompatible interactions
[56,87–93]. Biosynthetic pathways of several chemical products,
such as jasmonic acid and phenylpropanoid, adenosylmethionine,
ethylene, and so forth, were involved in the resistance response
[94]. In spite of a network of molecular events during SCN–soybean
incompatible interaction, there is a conserved differential gene
expression in Peking and PI 88788, suggesting that there are
particular genes involved in SCN resistance in Glycine max [56].
Up-regulation of salicylic acid (SA) pathway-related genes during
the resistance response has been reported [56,89,95,96]. These
molecular events eventually contribute to syncytia degeneration
in an incompatible interaction. These defense-related genes are
up-regulated within syncytia as a direct resistance response
[23,89].

The activity of S-adenosyl-L-methionine (SAM)-dependent
salicylic acid carboxyl methyltransferase 1 (GmSAMT1) in soybean
resistance response to SCN has been reported [96]. When GmSAMT1
was overexpressed in different susceptible soybean lines, resistance
to SCNwas enhanced [97,98]. However, the interaction between SA
and Rhg1 or Rhg4 during the resistance response is unknown. In
another incompatible interaction, the polygalacturonase level was
reduced when Peking and PI 88788 were infected by SCN [99],
whereas levels of an ethylene-related protein (GmEREBP1)
increased in infected soybean roots by the third day and sixth day
in the resistant PI 437654, but decreased after six days in a suscep-
tible cultivar [100]. Similarly, in an incompatible reaction with the
cultivar Centennial (Peking source of resistance), phytoalexin
glyceollin I increased 8 h after penetration by SCN J2, and increased
to a maximum concentration of 23 lg�g�1 of roots at 6 d after
penetration [101]; in contrast, 6 d after infection, the glyceollin I
Table 1
A comparison of the two types of SCN resistance in soybean.

Resistance type Perking-type

Resistance allele(s) rhg1-a, Rhg4
Resistance requirement rhg1-a, Rhg4
rhg1 copies Low (1–3)
rhg1 genes AAT, a-SNAP, WI12
a-SNAP + Rhg 4 Resistance
a-SNAP polymorphism High
Nuclear degeneration Rapid
Cytoplasmic degeneration 4–5 DAI
Site of necrosis initiation Inside syncytium
Cell wall appositions Observed
Dilation of RER Observed
concentration was 7 lg�g�1 of roots during a compatible interac-
tion. In addition, other proteins such as 4-coumaroyl CoA ligase
and phenylalanine ammonialyase increased in the incompatible
host compared with in the compatible host, and showed greater
activity in the cultivar Hartwig than in the cultivar Forest, which
has a Peking source of resistance [102].

Another soybean gene, GmDS1, which encodes a receptor-like
membrane protein (7.9 kDa), induced pathogen- and pest-
associated molecular pattern (PAMP)-triggered immunity against
multiple pests such as SCN and a fungal pathogen [103]. It is
evident that the SCN–soybean interaction is complex, and is
controlled by multi-genes at the Rhg1 and Rhg4 loci, whose expres-
sion is dependent on the copy number and on nucleotide varia-
tions, methylation, and the epistatic relationship between these
three factors, with the involvement of other minor genes. Our
understanding of the function of these genes and of how they
interact or how methylation patterns affect SCN–soybean interac-
tion will be critical for breeding SCN-resistant cultivars.

7. Marker-assisted selection of SCN resistance

Plant breeders traditionally select SCN-resistant lines based on
the response of the lines to SCN infection under greenhouse and
field conditions [16]. This process is not only difficult but also
labor, time, and capital intensive, and it is made even more com-
plex by genetic variability in SCN populations [16]. Marker-
assisted selection (MAS) is, however, based on alleles at genetic
markers that are linked to SCN-resistance genes of interest [104].
The estimated cost of genotyping per data point using simple
sequence repeat (SSR) markers is 0.25–1.00 USD, and requires
1–2 d; in contrast, using a greenhouse bioassay costs 1.50–5.00
USD per data point and requires 30 d [16].

Molecularmarkers have been identified in order to facilitate soy-
bean breeding programs, including restriction fragment length
polymorphisms (RFLPs), amplified fragment length polymorphism
(AFLP), random amplified polymorphic DNA (RAPD), sequence-
characterized amplified region (SCAR), and SSR markers and single
nucleotide polymorphisms (SNPs) [16,66,67,77,86,105–109]. In
addition to traditional QTLmapping using populations derived from
bi-parental crosses, genome-wide association study (GWAS) using
diverse and naturally occurring populations has been employed as
an effective strategy for identifying QTL and elucidating the genetic
basis of cyst nematode resistance in soybean [107–111]. Plant
GWAS is becoming popular mainly due to advances in genome-
sequencing technologies and to the capacity to generate more pre-
cise QTL positions with a sufficient number of genetic markers that
can be identified [109]. Functional SNP markers to select either the
rhg1 resistance allele or the Rhg4 resistance allele and to differenti-
ate between PI 88788- and Peking-type resistances have been
developed for high-throughput MAS [111,112]. At present, molecu-
lar assays are available to predict the Rhg1 copy number in soybean
PI 88788-type References

rhg1-b [8,14,51,76,83]
rhg1-b [14,68,81]
High (7–10) [16,17]
AAT, a-SNAP, WI12 [15–17,83]
Susceptibility [68,80]
Low [69,80,86]
Slow [1,53,55,56,72]
8–10 DAI [49,53,55,56]
Outside syncytium [53,56,83]
Not observed [30,53,72,83]
Not observed [53,55,83]
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resistant lines [80,113,114], which will help to improve resistance
selection and breeding accuracy.
8. Implications for SCN-resistance breeding

The major loci, Rhg1 and Rhg4, controlling SCN resistance in
soybean seem to have different evolutionary origins. The Rhg4
locus encoding the enzyme SHMT is absent in wild-type soybean
cultivars, whereas the sensitive allele, rhg4, is present in wild-
type soybean cultivars [83]. The Rhg4 locus contains two critical
missense mutations that are absent in the sensitive allele, rhg4,
suggesting that the Rhg4 allele involved in SCN resistance may
have arisen through selection during domestication [74,83,84].
The implication is that artificial, directed missense mutations can
be produced within the Rhg4 locus to create SHMT isoforms with
increased enzymatic activity in new breeding lines.

The evolutionary scenario for the Rhg1 gene seems to be quite
different from that of Rhg4. The Rhg1 gene locus is present in both
the wild-type soybean, Glycine soja, and the domesticated type,
Glycine max, intimating that the origin of Rhg1 likely predates
domestication and divergence [80]. Soybean lines PI 468916 from
Glycine soja and PI 438489B or PI 89772 from Glycine max are resis-
tant to several SCN populations and carry novel genes for resis-
tance [115,116]. Likewise, other SCN-resistant lines do not carry
the common resistance Rhg1 and Rhg4 loci [111]. These findings
suggest the prospect of identifying novel resistance genes that—
once successfully identified, characterized, and introgressed into
soybean—would provide alternative genes for resistance to SCN.

Glycine soja contains three copies of the 31.2 kb tandem repeat
units at Rhg1, whereas some of the Glycine max accessions can have
up to 10 copies of the tandem repeat units [75]. It has been
suggested that the repeat originally came as a duplication and
recombination [80]. This gene-duplication event probably accounts
for the existence of more repeats in the cultivated SCN-resistant
accessions.

Further enhancement of resistance can be accomplished by
pyramiding genes from a variety of resistant sources, which may
lead to an increase in the copy numbers of the resistance alleles.
Gene stacking of the Rhg4 and Rhg1 alleles with increased copies
of the Rhg1 allele may broaden resistance to SCN. Combining
SCN-resistance alleles from different sources through backcrossing
studies revealed that stacking genes from different resistant
sources may broaden the SCN-resistance background [117]. In
addition, resistance can be enhanced by the overexpression of
plant defense-related genes. It is interesting to note that other
SCN-resistant QTL that differ from Rhg1 and Rhg4 have been iden-
tified in Glycine soja [118]. When the resistant alleles in Glycine soja
were stacked with Rhg1 and Rhg4 alleles, resistance against SCN
was increased [119].

Recent genetic manipulation studies show that the silencing or
overexpression of certain genes in soybean plants can lead to
increased SCN resistance [36,97]. In a parallel study, knocking
down a ran-binding protein gene (Hg-rbp-2) from SCN reduced
SCN root invasion and development [38]. While many experiments
indicate that it is feasible to achieve SCN resistance in soybean by
means of the genetic manipulation of genes other than Rhg1 and
Rhg4, much more work lies ahead in our attempts to improve
breeding efficiency and scale up the production of transgenic
SCN-resistant soybean lines for the use of farmers.
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