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Field pea (Pisum sativum var. arvense L.) is an important legume crop around the world. It produces grains
with high protein content and can improve the amount of available nitrogen in the soil. Aphanomyces root
rot (ARR), caused by the soil-borne oomycete Aphanomyces euteiches Drechs. (A. euteiches), is a major
threat to pea production in many pea-growing regions including Canada; it can cause severe root
damage, wilting, and considerable yield losses under wet soil conditions. Traditional disease manage-
ment strategies, such as crop rotations and seed treatments, cannot fully prevent ARR under conditions
conducive for the disease, due to the longevity of the pathogen oospores, which can infect field pea plants
at any growth stage. The development of pea cultivars with partial resistance or tolerance to ARR may be
a promising approach to analyze the variability and physiologic specialization of A. euteiches in field pea
and to improve the management of this disease. As such, the detection of quantitative trait loci (QTL) for
resistance is essential to field pea-breeding programs. In this paper, the pathogenic characteristics of A.
euteiches are reviewed along with various ARR management strategies and the QTL associated with
partial resistance to ARR.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Field pea (Pisum sativum var. arvense L.), along with common
bean (Phaseolus vulgaris L.), faba bean (Vicia faba L.), soybean (Gly-
cine max (L.) Merr.), chickpea (Cicer arietinum L.), and lentil (Lens
culinaris Medik.), belongs to the family Fabaceae. The interaction
between pea and Rhizobium bacteria leads to the formation of root
nodules, which enable pea roots to fix nitrogen directly from the
atmosphere, thereby benefiting production of the pea and subse-
quent crops. Pea seeds have a high protein content, are rich in
starch, dietary fiber, vitamins, minerals, and polyphenols, and
provide a protein-rich food source for both humans and livestock
[1]. Garden peas are processed for canning or freezing by the
food industry, while field pea is one of the most widely cultivated
crops for human consumption and livestock feed on the
Canadian Prairies, with an export market value of 1.2 billion CAD
in 2016 [2].
World grain pea production peaked in 1990 at 1.66 � 107 t; by
2014, it had decreased by 5.5 � 106 t due to a reduction in pea
cultivation in Europe [3,4]. Since then, European pea cultivation
has once again increased as a result of new Common Agricultural
Policy (CAP) greening measures [5]. Pea cultivation was introduced
to Canadamore than a century ago [6], first in limited areas in East-
ern Canada in the late 1800s. In 1985, there were only 8.05 � 104

hm2 of field peas seeded in Canada. There was a significant
increase in pea cultivation in North America (i.e., Canada and the
United States) starting in the 1990s. Because of its adaptation to
cool climates and its nutritional value for human and livestock
consumption, field pea has become increasingly popular as a cash
crop to meet demand for the export market in Canada. By 2014,
Canada had become the largest field pea producer in the world,
which now accounts for 21% of global production [4].

At present, Aphanomyces root rot (ARR) is one of the major
limitations to pea production worldwide. This disease is caused
by Aphanomyces euteiches Drechs. (A. euteiches), which is distin-
guished from most other soil-borne pathogens by the formation
of thick-walled oospores [7]. It can cause severe root damage at
all growth stages of its host. The longevity of A. euteiches oospores,
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combined with the absence of fully resistant pea genotypes,
makes the management of ARR difficult. This review describes
pathogenic variability in A. euteiches, and the application of tradi-
tional management strategies and partial resistance to control ARR
in field pea.

Pea root rot complex (PRRC) has been reported to be a serious
problem in field pea production in Canada [8] and worldwide [9].
When root rot is severe, yield reduction can be as high as 70%
[10,11]. A number of soil-borne pathogens have been reported
to be involved in PRRC, including A. euteiches, Fusarium spp.,
Pythium spp., Phytophthora spp., and Rhizoctonia solani Kühn
[12–15]. Fusarium solani (Mart.) Sacc. (F. solani) was the most
common causal agent of pea root rot worldwide [16]. In addition
to Fusarium spp., A. euteiches has been reported to occur in certain
countries in North America and Europe, as well as in Japan, Aus-
tralia, and New Zealand [17]. Yield losses due to infection by
Pythium ultimum and A. euteiches were reported in the United
States [18,19]. An estimated loss of 2.4 � 104 t of field pea caused
by PRRC occurred in Southern Ontario in 1983 [10]. F. avenaceum
(Corda ex. Fr.) Sacc. was reported to be the main cause of
Fusarium root rot in pea crops in Alberta and Manitoba, account-
ing for as much as 80% of the isolates collected from field samples
[20,21]. Hwang and Chang [22] reported that PRRC was prevalent
in the Canadian province of Alberta. Tu [23] noted that the
amount of damage to field pea caused by Fusarium spp. is influ-
enced by soil compaction, temperature, and moisture levels,
which may also impact the relative prevalence of F. solani [16]
and F. avenaceum [20].

Infection by PRRC is associated with seed decay, damping-off,
seedling blight, root rot, and wilt; however, the identity of the
causal organisms cannot be determined solely by examining the
symptoms [24]. This increases the difficulty of predicting and
controlling pea root rot in western Canada and elsewhere. Direct
invasion of the seeds by any of the fungi involved in the PRRC
complex, but most often by Pythium spp., is usually the cause
of seed decay [25,26], which results in a soft, mushy appearance
of the seeds and in their rapid deterioration. Damping-off and
seedling blight reduce seedling emergence and plant density,
limit pea growth, delay canopy closure, and therefore increase
weed competition. All of these factors may cause yield reductions
[27]. Root rot also restricts the transport of water and
nutrients in infected roots, and reduces canopy density and the
uniformity of crop maturity [28]. Root rot may also destroy
rhizobial nodules, leading to a reduction in nitrogen fixation in
the roots [29].
2. ARR caused by A. euteiches

A. euteiches belongs to the class Oomycota (oomycetes), which
comprises a large group of eukaryotes that includes the most
diverse, important, and earliest-known water molds [30]. Oomy-
cetes resemble fungi in morphology (i.e., mycelial growth) and
many are parasitic. Unlike true fungi, oomycetes produce motile,
biflagellate zoospores [30,31]. Cytological and biochemical studies
indicate additional differences that distinguish oomycetes from
fungi [32–34]. At the vegetative stage, the mycelia of oomycetes
consist of a coenocytic thallus that remains diploid [33] (Fig. 1
(a)). The formation of haploid nuclei only occurs through meiosis
for gamete formation. At this stage, fungal thalli produce septate
cells, each of which carry one haploid nucleus. In addition, in con-
trast to fungal cell walls, which are composed mainly of chitin
(acetylglucosamine polymers), along with glucans, polysaccha-
rides, mucopolysaccharides, waxes, and pigments, the cell walls
of oomycetes contain cellulose, b-glucans and hydroxyproline,
but no chitin [35].
The genus Aphanomyces includes a number of water molds that
are saprophytes or parasites of fish, crayfish, and plants [36]. There
are about 40 described species of Aphanomyces [37]. Most have a
wide range of hosts belonging to different families, although there
are a few exceptions such as A. cochlioides Drechs., which only
affects sugar beet (Beta vulgaris L.) [37] and A. iridis Ichitani et
Tak. Kodama, which only affects iris (Iris spp.) [36]. Although A.
euteiches has a broad host range within the family Fabaceae, it
causes the greatest economic damage to pea and lentil crops
[38–40]. This parasite has been isolated from pea, alfalfa (Medicago
sativa L.), snap and red kidney bean (Proteus vulgaris L.), faba bean,
red clover (Trifolium pratense L.), white clover (Trifolium repens L.),
lentil, and several weed species [38,41]. Nevertheless, its occur-
rence and degree of pathogenicity may differ from one host to
another. Pea-infecting strains and alfalfa-infecting strains of A.
euteiches from the United States and France have been identified,
and some strains can infect both pea and alfalfa [39,42,43]. Papavi-
zas and Ayers [38] reported that infection by A. euteiches caused
large economic losses in pea and alfalfa crops in North America
and Europe. The wide host range of A. euteiches, combined with
its long-lived oospores, makes the management of ARR with crop
rotation difficult.

Since it was first described by Jones and Drechsler [44] and
extensively reviewed by Papavizas and Ayers [38], A. euteiches
has been considered to be one of the most damaging soil-borne
pathogens of legumes. At present, A. euteiches has been reported
in all of the main pea cultivation regions of the world [17]. In
France, it affects pea crops in the northern regions of the country
[41]. In North America, it causes severe yield losses in the Great
Lakes region in both Canada and the United States, as well as in
the Northeastern [25] and the Pacific Northwest [45] regions of
the United States. A high incidence and severity of pea root rot
caused by A. euteiches was recently reported in Alberta [46]. Yield
losses caused by this parasite can be as high as 86% in heavily
infested pea fields [47].
2.1. Favorable conditions

Symptoms of ARR can develop within 7–14 days after first
infection, depending on soil moisture, temperature, and the
concentration of oospores [38,47]. High inoculum densities of
A. euteiches increase the incidence and severity of ARR. Chan
and Close [7] observed a positive correlation between the num-
ber of oospores per 100 g of soil and root rot severity. Oospores
can form germ tubes, which directly penetrate the cortex of the
pea roots. Soil moisture levels influence the formation of
sporangia and the release of zoospores, and allow the flagellated
zoospores to travel to the plant roots in the moisture films sur-
rounding soil particles [48,49]. Zoospore infection also facilitates
the leakage of metabolites from pea roots [50], which stimulates
the germination of oospores and attracts more zoospores [9].
High rainfall favors ARR outbreaks, and only a short period is
required for the completion of the infection process by
A. euteiches [25]. The minimum level of soil moisture needed
for the initiation of ARR is about 30% of the water-holding
capacity of the soil [51,52].

ARR may occur over the same wide soil-temperature range that
is conducive for pea growth [25]; however, the optimal tempera-
tures for infection are about 16 �C, and 20–28 �C for disease devel-
opment [53,54]. High temperatures may accelerate pea root decay
following infection by A. euteiches, since severe infection further
limits water and nutrient movement within field peas [55].

Gaulin et al. [56] reported that A. euteiches can infect legume
hosts at any growth stage, while others have suggested that
infection occurs most commonly at the seedling stage [57,58].



Fig. 1. Structures of A. euteiches. (a) Coenocytic hyphae with no septa; (b) encysted zoospore losing both flagella; (c) oogonium of A. euteiches; (d) antheridium and oogonium
of A. euteiches during the sexual stage; (e) thick-walled oospore for survival in unfavorable conditions.
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2.2. Life-cycle of A. euteiches

The life-cycle of A. euteiches includes both asexual and sexual
stages, which allow for its efficient dissemination via zoospores
and its survival as oospores during harsh winter conditions [41].
The oospores are 18–25 lm in diameter, have a thick protective
wall, and contain energy reserves in the form of a large oil globule
[9,38]. They can survive in the soil for over ten years [47] and may
be spread over long distances by the transportation of infested soil
and/or infected plant residue [38].

When adjacent to pea roots, the oospores germinate under con-
ducive temperature and moisture conditions, and form either a
mycelium or a zoosporangium. The zoosporangium, which forms
as long tubes on the oospores, may release a large number of zoos-
pores [59]. The biflagellate motile zoospores are attracted to a suit-
able host by chemical signals in the root exudates [60], and encyst
within minutes on the rhizoplane (Fig. 1(a)). The resulting cysts
germinate and penetrate the host cortical cells within hours [38].
Once an infection site has been established, coenocytic hyphae
develop rapidly in the intercellular spaces of the host root tissue
and the pathogen spreads from the roots to the stem (hypocotyls
and epicotyls), eventually colonizing the entire root system. The
infected roots become soft and water-soaked, and take on a
honey-brown or blackish-brown coloration, which turns orange-
brown or blackish-brown during the later stages of disease devel-
opment (Fig. 2(b) and (c)).

Within a few days of infection, A. euteiches may enter its sexual
stage with the formation and fusion of haploid antheridia and
oogonia [59] (Fig. 1(a) and (d)). Subsequently, thick-walled oos-
pores are formed, which ensure the long-term survival of the
pathogen and serve as the primary source of inoculum for new
infections in subsequent years [61] (Fig. 1(e)). The parasite may
progress from first infection of the roots to formation of oospores
in as few as 10–14 days [62].

The translocation of water and nutrients within infected plants
can be restricted by severe root rot [63] (Fig. 2(a) and (f)). Infected
plants may become stunted during the early growth stages and
then start to wilt, resulting in premature death [64] (Fig. 2(d)).
Moreover, ARR may severely delay pea maturity, reduce pod size
and seed number, and decrease seed quality [64] (Fig. 2(e) and (g)).

2.3. Variability and physiological specialization in A. euteiches

Information on pathogenic variability and physiologic speciali-
zation in A. euteiches is limited. Given the absence of completely
resistant or immune pea genotypes, it is difficult to create a differ-
ential set to distinguish races, and the races identified by the
limited differential genotypes may exhibit atypism [38]. Nonethe-
less, differences among isolates have been detected based on zoos-
pore and oospore size, the time required for sporulation and the
ability to produce zoospores, growth rate on culture media, and
the production of pectinolytic and cellulolytic enzymes [38].

Physiological specialization in A. euteiches was first examined
by King and Bissonnette [65], who indicated that isolates of the
parasite differed in their virulence patterns on various pea culti-
vars in Minnesota. Carlson [55] tested ten isolates of A. euteiches,
which were isolated from infested soil from Minnesota, New York,
and Wisconsin, by inoculating the root tips of tolerant and suscep-
tible pea cultivars, and reported considerable differences in the
ability of the isolates to infect plants and produce oospores. Vari-
able virulence and growth characteristics on culture media were
also observed among seven single-zoospore isolates obtained from
germinated oospores [48]. Beute and Lockwood [66] inoculated six
differential cultivars with 15 A. euteiches single-zoospore isolates,
and identified two races based on their virulence on those pea cul-
tivars (Table 1) [66–70]. The two races displayed a different disease
reaction pattern on the six pea cultivars, based on disease severity.
Employing the same differentials as Beute and Lockwood [66],
Sundheim and Wiggen [67] confirmed the existence of four
physiological races of A. euteiches in a collection of 14 isolates from
four counties in Norway. Sundheim and Wiggen [67] evaluated
resistance by counting the number of dead plants ten days after



Fig. 2. Symptoms of pea ARR caused by A. euteiches. (a) Yellowing and stunting of pea stems in the field; (b) comparison of healthy (left) and diseased (right) plants; (c)
discoloration and water-soaking of diseased pea rootlets; (d) wilted pea plants in the field near harvest; (e) comparison of healthy (left) and diseased (right) pods; (f) Seedling
blight in a low area of a field after heavy rainfall; (g) bleaching of leaflets and premature ripening of the pod.

Table 1
Studies on pathogenic variability and physiological specialization in A. euteiches isolates from pea using various sets of differential pea genotypes.

Method Differential genotypes Identified race/
virulence type

Isolate region Ref.

Race identification Miragreen; Early Perfection; PI 175232; PI 169604; PI 180693;
PI 166159

Races 1 and 2 United States [66]

Race identification Miragreen; Early Perfection; PI 175232; PI 169604; PI 180693;
PI 166159

Races 1–4 Norway [67]

Race identification Miragreen; Early Perfection; PI 175232; PI 169604; PI 180693;
PI 166159

Race 5 New Zealand [68]

Pathogenic variability MN313; MN314; 90-2079; WI-8904; Little Marvel; Saranac;
Early Gallatin

Virulence groups I–IV United States [69]

Pathogenic variability Baccara; Capella; 90-2131; MN313; 552; PI 180693 Virulence types I–XI North America, Europe, and Oceania [70]
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inoculation. The method of race identification described by Sund-
heim and Wiggen [67] was questioned by Manning and Menzies
[68], who suggested that the irreversibly wilted plants 10 d
after inoculation could not fully reflect the virulence spectrum of
A. euteiches. The inconsistencies between these studies underscore
the difficulties associated with race identification in A. euteiches.

Malvick and Percich [69] developed a new differential set (con-
sisting of the pea genotypes MN313, MN314, 90-2079, WI-8904,
Little Marvel, Saranac, and Early Gallatin) to evaluate pathogenic
diversity among 114 A. euteiches isolates from the United States
(Table 1), and also examined genetic variation via random ampli-
fied polymorphic DNA (RAPD) analysis. All isolates were patho-
genic on one or more pea cultivars, and 18% and 14% were
pathogenic on alfalfa (Saranac) and bean (Early Gallatin), respec-
tively. Malvick and Percich [71] concluded that A. euteiches popula-
tions were genotypically (based on the RAPD analysis) and
phenotypically variable in the central and western United States.
In a subsequent study, four virulence groups were identified, in
which a disease severity of greater than 3.0 (i.e., > 90% of the roots
brown or yellow, but no symptoms present on the epicotyl or
hypocotyl) was used as the threshold for a clear pathogenic inter-
action [72].
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Later, Wicker and Rouxel [70] examined 109 isolates of A. eute-
iches from France, Denmark, Sweden, Norway, the United States,
Canada, and New Zealand on another differential set (Baccara,
Capella, 90-2131, MN313, 552, and PI 180693) and identified 11
virulence types (Table 1). In that study, the isolates belonging to
virulence type I, which caused severe ARR symptoms on all of
the differentials, were predominant and the most aggressive.
Wicker and Rouxel [70] also calculated a disease severity index
(DSI) based on the mean of the individual disease severity ratings
(0–5), and regarded a DSI < 1 as indicative of resistance.

In a later study, Wicker et al. [17] indicated that the differential
pea genotypes used by Malvick and Percich [69] were inadequate
to distinguish French strains of A. euteiches. To more accurately
evaluate the virulence of the pathogen from different countries,
Wicker et al. [17] evaluated 33 pea lines and the five differentials
originally described by Wicker and Rouxel [70]. The resistance
detected in the differential pea genotypes in these studies has been
used in the development of commercial pea cultivars with ARR
resistance [17]. Wu [73] conducted greenhouse screening of eight
A. euteiches isolates from Alberta and Manitoba on the same differ-
ential set as Wicker and Rouxel [70]. Most strains were classified as
virulence type I, although one strain was identified as virulence
type III. Further testing of additional isolates from other Canadian
regions with more differential breeding lines is still needed in
order to better understand physiological specialization in this
pathogen.

2.4. Isolation of A. euteiches

The isolation of A. euteiches strains is difficult. Pea root and root-
let samples easily slough off infected tissue into the soil [74].
Numerous fungi also interfere with the isolation of A. euteiches
[75]. Manning and Menzies [75] successfully isolated A. euteiches
on potato dextrose agar (PDA) plates using soil baiting. To increase
the isolation success rate, metalaxyl-benomyl-vancomycin (MBV)
[25] medium has been widely used to isolate A. euteiches, since it
suppresses the growth of Pythium spp., Phytophthora spp., and
most bacteria.

Wu [73] used both direct isolation from infected root samples
and soil baiting. For direct isolation, root and soil samples were
collected at 2–3 weeks after seeding, when roots were not yet com-
pletely infected by PRRC. The soil samples were later used for
pathogen baiting with susceptible pea cultivars [68]. The tips were
cut from water-soaked pea roots and examined under a micro-
scope for the presence of oospores. The root tips were surface-
sterilized in 1% NaClO for 30 s, rinsed in sterilized water, and
plated on MBV medium. However, A. euteiches was detected in
< 0.1% of the samples, based on the results of a real-time poly-
merase chain reaction (PCR) assay described by Vandemark et al.
[76].

2.5. Inoculation methods

Zoospores are the most common form of A. euteiches inoculum
employed in greenhouse experiments [17,43,70,77–83], while
oospore-based inoculum has also been used in both greenhouse
and field trials [38,73]. The zoospore-based inoculum has been
used widely for the detection of partial resistance to ARR in field
pea [77–83]. Zoospore inoculum is usually produced in a broth
made from corn kernels, maltose-peptone, and oat (Avena sativa
L.), or from pea seeds suspended in water, which are inoculated
with A. euteiches and incubated for 5–7 d in the dark at room tem-
perature [84]. The resulting mycelial mats are placed in a mineral
salt solution and aerated overnight to produce a zoospore suspen-
sion of 3 � 105–8 � 105 zoospores per milliliter. The zoospores
are usually used to precisely inoculate seven-day-old pea
seedlings, before the seedlings are transplanted into pots in a green-
house, with a determined zoospore concentration, thus eliminating
the undesirable effect of nutrient substances in the media.

Oospore inocula have been produced on autoclaved rolled oats
with sand, cornmeal, and water. This substrate is inoculated with
A. euteiches and incubated in the dark for 30 days at room temper-
ature [38]. Wu [73] modified this method by replacing cornmeal
with oat grain. The grain-sand inocula were often used in field
trials, as well as in greenhouse experiments, which need intensely
infected disease conditions. Thygesen et al. [85] incubated
A. euteiches in an oatmeal broth at 20 �C in the dark for 4–8 weeks;
the broth was homogenized in a blender and then filtered and
washed with a mineral salt solution. The suspension was mixed
with sterilized sand, dried at room temperature, and stored at
4 �C. The oospore suspension also provides a precise inoculation
for both the pea seedlings and pea seeds, which could continuously
release zoospores in a greenhouse experiment.
3. Traditional disease management

ARR has been recognized as one of the most damaging root
diseases of field pea for almost a century [86]. The options for
management of this disease, however, are limited. Pea cultivars
completely resistant to ARR are not available [25,87] and only
partial resistance and/or tolerance has been reported in several
studies [80,81,88]. Some studies have focused on the efficacy
of fungicidal seed treatments at the seedling stage, which have
been shown to improve plant health [89,90]. At present, the
most widely recommended method to manage ARR is avoidance
via crop rotation and evaluation of infestation levels in the field
prior to seeding [91]. Biological control, including seed and soil
treatments, has also shown promise at the experimental stage
[9,92].
3.1. Cultural practices

Crop rotation is one of the oldest and most fundamental meth-
ods to manage diseases caused by soil-borne pathogens, although
its effectiveness directly coincides with the length of rotation
[93]. A positive relationship exists between the frequency of pea
crops and root rot severity [86]. Rotation with non-host crops
can therefore reduce the density of A. euteiches in the soil and
thereby reduce the severity of ARR. Long-term crop rotations can
reduce A. euteiches inoculum density in the soil, but they are not
always effective in eradicating the disease [94]. Nonetheless, the
practicality and effectiveness of crop rotation as a method to
manage ARR is questionable, because the oospores can survive
for 10–15 years in the absence of a host [95]. Furthermore, many
alternative hosts, including chickpea, lentil, alfalfa, and weedy
species, can sustain inoculum levels in the absence of pea [38].
Hossain et al. [96] recommended a crop rotation interval of 6–8
years. Williams-Woodward et al. [97] examined the effect of oats
as a rotation crop with pea, and observed that oat residues
improved ARR suppression. Therefore, increased crop diversity
may represent a good long-term strategy for disease management
[98].

Soil conditions can be suppressive or conducive to ARR [99].
Heyman et al. [100] observed a strong negative correlation
between calcium concentration and disease development, which
indicated that free calcium was a major variable in the degree of
soil suppression of A. euteiches. This finding led to the suggestion
that calciummight play a role in the inhibition of zoospore produc-
tion from the oospores [100].

Residues from two plant families, the Brassicaceae—such as
cabbage (Brassica oleracea L.), mustard (Brassica nigra L.), turnip
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(Brassica rapa L.), and rapeseed (Brassica napus) [7,8,63,101–103]—
and the Poaceae—such as oats, rye (Secale cereale L.), and maize
(Zea mays L.) [8,97,104–108]—can reduce the severity of ARR.

Soil compaction can exacerbate the development of ARR,
causing pea yield losses as high as 63% [107]. In contrast, the yield
of pea plots covered with oat shoots and residues increased by 48%
relative to plots planted without residues, suggesting that oat
residues provide a promising method for the cultural control of
pea ARR. Allmaras et al. [87] confirmed the effect of oats as a
pre-crop in the suppression of ARR, and pointed out that excessive
compaction related to tillage and traffic management may impair
internal soil drainage and thus reduce the effectiveness of oat
residues in controlling the disease.

Field indexing by sampling soils to determine the A. euteiches
inoculum potential can be an effective method to manage ARR of
field pea prior to seeding. Studies have identified and distinguished
heavily infested fields from non-infested or lightly infested fields
under greenhouse conditions [109,110], and this method of prior
land selection can be an economical and dependable practice for
avoiding ARR [111]. Real-time PCR analysis has also been used to
measure populations of A. euteiches in field soil. Vandemark et al.
[112] and Armstrong-Cho et al. [113] demonstrated that a positive
relationship existed between ARR severity and the DNA concentra-
tion of several isolates of A. euteiches in pea roots.

3.2. Disease prediction and molecular detection of A. euteiches

Molecular markers are useful tools for the identification of
fungal and oomycete plant pathogens. The testing of soil or plant
samples for the presence of A. euteiches DNA by PCR analysis with
species-specific primers has been widely used [76]. Chatterton
et al. [46] and Armstrong-Cho et al. [113] detected A. euteiches in
pea fields in Alberta and Saskatchewan, respectively, based on a
PCR assay. A number of commercial kits have also been used to
identify A. euteiches efficiently [46,76,112]. Nonetheless, informa-
tion on the use of molecular markers for the identification of
specific races or pathotypes of A. euteiches is still limited and
preliminary.

Malvick and Percich [69] conducted RAPD analyses to evaluate
genotypic diversity among strains of A. euteiches in the United
States, but none of the 76 polymorphic RAPD markers were associ-
ated with pathogenic variation. In another study, the same
researchers successfully distinguished one major group and two
closely related minor groups in a collection of 114 isolates from
four locations in the United States, based on a pathogenicity test
of five pea genotypes and RAPD analysis [69]. Sauvage et al.
[111] used two sets of markers, 136F/136R and 11F/280R,
to amplify different-sized PCR products from 105 isolates of
A. euteiches. They demonstrated a close relationship between the
quantity of soil inoculum and ARR severity.

3.3. Seed and soil treatments

Certain soil fungicides for ARR control are prohibited in some
regions, including much of Europe [96]. In addition, the cost and
adverse environmental effects of treating the soil with chemicals
makes this approach impractical and undesirable across the broad
area over which pea crops are grown [114,115]. Seed-coating treat-
ments such as hymexazol can effectively improve seedling emer-
gence [116]. However, Tu [106] pointed out the limitations in the
control of pea root rot using Captan (N-trichloromethylthio-4-
cyclohexene-1,2-dicarboximide). Furthermore, A. euteiches is resis-
tant to some of the fungicides that are registered for the control of
other oomycetes. For example, metalaxyl is active against most
oomycetes, but not against Aphanomyces. It is the main ingredient
of the selective medium used to isolate A. euteiches [25]. Neither
the systemic acylalanine-type of oomycete fungicides, such as met-
alaxyl, nor the ethyl phosphonates, such as fosetyl-Al or cymoxanil,
effectively control ARR [117]. Some chemicals effectively suppress
A. euteiches under controlled conditions, but have limited benefi-
cial effects in field trials [89,90]. Tachigaren (hydroxyisoxazole or
hymexazol) was reported to reduce root rot severity and increase
yield under experimental field conditions [116]; this compound
is available commercially in Japan for the control of the Pythium
and Aphanomyces diseases of sugar beets [117]. The effectiveness
of Tachigaren for the control of ARR, however, was variable in other
studies [118–120]. A recent study determined that Intego Solo
(ethaboxam) (Valent, Guelph, ON, Canada), BAS 516F, and BAS
720F reduced disease severity under greenhouse conditions, but
not under field conditions [73]. At present, ethaboxam is the only
fungicide registered for Pythium root rot control and the suppres-
sion of seed rot caused by Phytophthora spp. and Aphanomyces
spp. in legumes in Canada.
3.4. Biological control

Antagonistic microorganisms applied to the seeds or soil may
help to protect pea plants from infection by fungal and oomycete
pathogens. The spores of arbuscular mycorrhizal (AM) fungi and
some spore-forming bacteria, which were applied as seed coatings
to control ARR in pea fields, significantly suppressed the develop-
ment of ARR in a field trial [121]. The application of isothiocyanate,
a compound produced by members of the Brassicaceae in shoot tis-
sues, has also been shown to have potential for the management of
ARR due to its toxic effects on A. euteiches under controlled condi-
tions [96].

Biocontrol and fungicide treatments are often integrated into
seed treatments. Recent studies have demonstrated that some fun-
gal and bacterial strains, such as Gliocladium roseum (Clonostachys
rosea (Link) Schroers), Pseudomonas fluorescens (Flügge) Migula,
and species involved in the Burkholderia cepacia (Palleroni and
Holmes) Yabuuchi et al. complex, which are formulated for seed
coat application in combination with a fungicide, improved seed-
ling emergence in fields infested with A. euteiches to a greater
extent than treatments in which only a fungicide was applied
[17,18,90]. Xue [90] evaluated a seed treatment consisting of the
fungal strain ACM941 (Clonostachys rosea) and a fungicide (Thiram
75 WP (thiram) or Apron FL (metalaxyl)), and found that a seed
coating with ACM941 + fungicide improved pea seed germination
in an A. euteiches-infested field. AM fungi have also been proven
to increase the seedling emergence of peas when inoculated with
A. euteiches in greenhouse experiments, but they were not always
effective in the field [85,122]. Several studies indicated that solar-
ization was effective for the control of pea root rot in temperate
regions, when used in combination with greenmanure crops, lower
dosages of chemicals, or biological control organisms [123,124].
4. Genetic resistance to A. euteiches

4.1. Partial resistance to ARR

Genetic resistance to ARR in field pea could be the most
economical and effective strategy for managing this disease. A
number of pea-breeding lines with partial resistance or tolerance
to ARR have been developed, and are used to prevent yield losses
in some pea-producing regions [78,79,88,125]. Some differential
pea genotypes, such as Capella, MN144, MN313, MN314,
90-2131, 90-2079, 552, and PI 180693, have been reported to be
partially resistant to certain races of A. euteiches [17,72,125]. The
differentials PI 180693 and 552 have drawn considerable attention
due to their high level of stable partial resistance to ARR [17,126].
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Conner et al. [88] reported a high level of tolerance in pea line
00-2067, resulting in good plant vigor and yield despite high
disease severity in an ARR disease nursery in Manitoba, Canada.
Similar findings were reported by Wu [73]. Therefore, line
00-2067 may be a candidate for the transfer of ARR tolerance into
agronomically desirable pea genotypes. Some sources of resistance,
however, have been linked to undesirable traits for node length
and for flower and hilum colors, which increases the difficulties
in transferring resistance or tolerance to agriculturally acceptable
pea-breeding lines [127]. Traditional phenotypic breeding for
partial resistance to ARR has been hampered by the polygenic
nature of the inheritance of resistance in field pea [79]. Therefore,
the identification and mapping of genes for partial resistance is
essential for the breeding of resistant pea lines in order to
effectively pyramid resistance genes.
4.2. Evaluation of resistance to ARR in field pea

Papavizas and Ayers [38] described the most common method
of evaluating ARR severity in detail. Plants were uprooted from
the soil at 3–4 weeks after seeding and washed under tap water.
The roots of each plant were rated on a 0–4 disease severity scale,
where: 0 = healthy roots with no visible symptoms of root rot;
1 = slight water-soaking of the primary or secondary roots;
2 = moderate water-soaking of the primary or secondary roots or
epicotyls with light-brown areas and more extensive discoloration;
3 = extensive infected areas, soft, but the entire root is not collapsed,
and the epicotyl is not markedly shriveled; and 4 = extensive discol-
oration of the roots with tissue collapse and disintegration, or the
plant is completely dead (Fig. 3(a)). Rao et al. [128] developed a
1–5 scale to assess disease severity based on the extent of symptoms
on both the roots and the epicotyl. Xue [129] developed a 0–9 scale,
which not only assessed the percentage of root infection, but also
considered the degree of necrosis (Fig. 3(b)).
4.3. Partial resistance to ARR

Partial resistance is controlled by many quantitative trait loci
(QTL) expressing minor to major effects on disease-symptom
suppression [130,131]. Several QTL associated with partial resis-
tance to A. euteiches have been identified using linkage mapping
populations derived from crosses between various combinations
of parental genotypes [77–83]. Three stable QTL—namely, Aph1,
Aph2, and Aph3—were identified in a recombinant inbred line
(RIL) population derived from Puget � 90-2079, located on linkage
group (LG) IVb, V, and Ia, respectively [77]. Furthermore, Aph1 and
Aph3 were associated with partial resistance to both American and
Fig. 3. Comparison of ARR disease ratings (a) on a 0–4 scale [38] and (b) on a 0–9
scale [129].
French strains of A. euteiches, while Aph2 was resistant only to the
French strain [78].

Hamon et al. [79] reported 135 additive-effect QTL correspond-
ing to 23 genomic regions and 13 significant epistatic interactions
associated with partial resistance to A. euteiches in two RIL popula-
tions from the crosses Baccara � PI 180693 and Baccara � 552. Five
consistent genomic regions (Ae-Ps1.2, Ae-Ps2.2, Ae-Ps3.1, Ae-Ps4.1,
and Ae-Ps7.6) affecting a root rot index (RRI) and an aerial decline
index (ADI) in two RIL populations were identified on LG I, II, III, IV,
and VII [79], and Ae-Ps1.2was co-localized to Aph3, as identified by
Pilet-Nayel et al. [77]. A QTL meta-analysis was also conducted to
examine three previously described RIL populations derived from
Puget � 90-2079 [77], Baccara � PI 180693, and Baccara � 552
[79], along with a fourth new population derived from DSP �
90-2131 [80]. A total of 27 meta-QTL were identified for ARR resis-
tance; these were well distributed over seven linkage groups, with
11 of the meta-QTL being located on seven genomic regions.

Lavaud et al. [81] also validated the twomajor QTL, Ae-Ps4.5 and
Ae-Ps7.6, and some minor QTL in near-isogenic lines (NILs) from
crosses with the resistant parental genotypes, 90-2131, PI
180693, and 552. In a subsequent study, Lavaud et al. [82] exam-
ined the functions of Ae-Ps4.5, Ae-Ps7.6, and some other minor
QTL in field pea and found a significant effect of these QTL on
ARR symptom expression and root colonization by A. euteiches.

Simple sequence repeat (SSR) markers developed by Loridon
et al. [132] were widely utilized in the abovementioned studies
to screen for reference markers. Various other molecular markers
have also been used in the study of ARR resistance, including
amplified fragment length polymorphism (AFLP), RAPD, inter
simple sequence repeats (ISSRs), and sequence-tagged sites (STSs)
markers. Due to rapid developments in molecular marker
technology and the decreasing cost of genotyping in recent years,
the genome-wide association study (GWAS) method has become
widely used as a standard approach to detect the natural variation
underlying complex traits, especially polygenic resistance to major
diseases in legumes [133,134]. Compared with linkage mapping
analysis between resistant and susceptible genotypes, GWAS
enables the analysis of wider genetic diversity along with higher
recombination rates due to the evolutionary history of the species;
thus, it substantially refines the location of the genomic regions
associated with trait variations.

Desgroux et al. [83] conducted GWAS mapping with 13204
single-nucleotide polymorphism (SNP) markers in order to narrow
down the confidence intervals of the QTL associated with ARR
severity. That analysis resulted in the identification of 52 QTL at
short intervals, which may be extremely valuable for use in pea
breeding as a means of increasing levels of partial resistance to A.
euteiches [83].

Root rot severity is the most commonly evaluated trait for
assessing ARR development in field pea in QTL detection studies
[77–83]. Other measurements to assess the adverse effects of
ARR include the ADI [79,80], as well as root weight, foliar weight,
and plant vigor in the field [88]. Wu [73] correlated ARR severity
with vigor, height, root dry weight, and foliar dry weight.
5. Concluding remarks

Field pea is an important legume crop that provides a valuable
protein source for human and livestock consumption. Pea produc-
tion is limited by ARR, a severe soil-borne disease caused by A.
euteiches. The longevity of the oospores, lack of high levels of host
resistance, and severe economic losses associated with ARR make
this disease particularly problematic. Compared with other patho-
gens involved in the root rot complex, A. euteiches can be highly
destructive, causing yield losses in excess of 80% in highly infested
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fields [47]. Although the importance of A. euteiches in pea produc-
tion has been recognized for nearly a century [44], species-specific
surveys on the incidence and severity of ARR based on a mixture of
molecular and morphology identification methods have only
begun in recent years. Studies on pathogenic variability in
A. euteiches have not been carried out consistently. Race names
and differential sets often differed between studies, making direct
comparisons of the results difficult. To analyze the genetic diver-
sity within species of A. euteiches, genotyping-by-sequencing
(GBS) could be applied by leveraging next-generation sequencing
(NGS).

The successful management of ARR continues to be a challenge
worldwide. Traditional cultural practices such as crop rotation
have limited effects on the control of ARR due to the long-term sur-
vival of thick-walled oospores in the soil. Seed treatments do not
persist long enough to suppress ARR through the whole life of
the field pea plant, and few commercial products are available at
present. The application of seed coatings consisting of combina-
tions of fungicides and biological controls should be investigated
further as a means of suppressing ARR. Partial resistance and/or
tolerance may be the most promising way to reduce the seed yield
and quality losses caused by ARR. Many major-effect QTL have
been identified via various molecular techniques; these techniques
may provide valuable resources for gene pyramiding in pea-
breeding programs. The use of genome-wide, transcriptome-
based pea SNP marker platforms using NGS technology could
further refine the precision and utility of the QTL that have been
detected.

Additional efforts are required to better understand the traits
and phenotypes that contribute both tolerance and resistance to
A. euteiches. Mechanisms such as effector-triggered immunity have
been well studied for other soil-borne oomycetes, such as the Phy-
tophthora root rot of soybean caused by Phytophthora sojae, and
should be investigated in the A. euteiches-pea interaction. Further
research is also needed on the mechanisms involved in pathogen-
esis, such as the breakdown, acquisition, ingestion, and metabo-
lism of the affected host tissue, and the chemical signals that
may trigger oospore formation. This information should facilitate
the development of new chemistries that inhibit the growth of
the pathogen, prevent spore formation, or curtail infection.
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