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Ultra-short laser pulses possess many advantages for materials processing. Ultrafast laser has a signifi-
cantly low thermal effect on the areas surrounding the focal point; therefore, it is a promising tool for
micro- and submicro-sized precision processing. In addition, the nonlinear multiphoton absorption phe-
nomenon of focused ultra-short pulses provides a promising method for the fabrication of various struc-
tures on transparent material, such as glass and transparent polymers. A laser direct writing process was
applied in the fabrication of high-performance three-dimensional (3D) structured multilayer micro-
supercapacitors (MSCs) on polymer substrates exhibiting a peak specific capacitance of 42.6 mF�cm�2

at a current density of 0.1 mA�cm�2. Furthermore, a flexible smart sensor array on a polymer substrate
was fabricated for multi-flavor detection. Different surface treatments such as gold plating, reduced-
graphene oxide (rGO) coating, and polyaniline (PANI) coating were accomplished for different measure-
ment units. By applying principal component analysis (PCA), this sensing system showed a promising
result for flavor detection. In addition, two-dimensional (2D) periodic metal nanostructures inside 3D
glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surface-
enhanced Raman spectroscopy (SERS). The processing mechanisms included laser ablation, laser reduc-
tion, and laser-induced surface nano-engineering. These works demonstrate the attractive potential of
ultra-short pulsed laser for surface precision manufacturing.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The use of ultrafast lasers, which emit light pulses with a period
shorter than a nanosecond, for material processes was first
reported in 1987 by Srinivasan et al. [1] and Küper and Stuke [2].
That study demonstrated that with the use of a femtosecond ultra-
violet excimer laser, polymethyl methacrylate could be ablated
without the formation of a heat-affected zone. In comparison with
nanosecond laser ablation, the ablation threshold for ultrafast
lasers is significantly lower. Limited heating diffusion in the sur-
rounding region of the processed area is an important feature of
ultrafast laser processing [3,4], as it allows high-precision micro-
fabrication with various materials, such as biological tissues, semi-
conductors, and insulators [5]. During an ultrafast interaction, the
absorption of photons stimulates the carriers within a hundred
femtoseconds, which is too short of a time period to disturb the lat-
tice. Efficient energy transfer from the electrons to the lattice thus
occurs by electron-lattice scattering at the end of the laser pulse
[6,7]. Depending on the electron–phonon coupling strength of dif-
ferent materials, the thermal coupling between free electrons and
lattices typically occurs in the range of 1–100 ps. The typical
electron–phonon coupling time of a hundred femtoseconds is
much shorter than the heat-transfer period by thermal conduction.
Therefore, thermal diffusion to the laser-irradiated surrounding
area is very limited [8], which is a very attractive feature of high-
resolution ultrafast laser processing. In an ideal case, ultrafast exci-
tation only occurs within the focal spot. However, for a laser pulse
with a duration of a few picoseconds or longer, thermal diffusion
cannot be neglected.

Nonlinear multiphoton absorption is another important aspect
of ultrafast laser processing. The probability of multiphoton
absorption can be significantly increased by the extremely high
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laser peak intensity of tightly focused ultra-short laser pulses, since
the probability is a power function of the peak intensity [9,10]. The
highly localized nonlinear effect of an ultra-short laser leads to
super-resolution processing beyond the optical diffraction limit;
strong absorption can even occur in a transparent material
[5,7,11–13]. The multiphoton absorption phenomenon that gener-
ated by ultrafast laser not only permits surface processing, but also
permits internal microfabrication of transparent materials such as
glass and polymer. This paper mainly reviews three works covering
the following topics: high-performance micro-supercapacitors
(MSCs) fabricated by a femtosecond three-dimensional (3D) laser
direct writing process, flexible smart sensor arrays on polymer
substrates for multi-flavor detection, and all-femtosecond-laser-
processing microfluidic surface-enhanced Raman spectroscopy
(SERS) chips fabrication.
2. Laser direct writing on polymer substrates for energy device
and sensor applications

2.1. High-performance MSC fabricated by 3D laser direct writing

The laser ablation of polymeric materials has been studied since
1980 [14]. Since then, numerous applications have been reported,
especially in the field of optics [15–19]. In 2014, Lin et al. [14]
reported their research on laser-induced graphene (LIG) films from
commercial polyimide (PI). The CAO, C@O, and NAC bonds con-
tained in the PI film were easily broken by means of laser irradia-
tion, and were then rearranged to form porous structures. An
interdigitated LIG MSC with an areal capacitance of 4 mF�cm�2 at
20 mV�s�1 was fabricated in that study. LIG has a relatively large
surface ratio, as well as a porous structure with good conductivity.
Thus, laser direct writing on polymer substrates has become a very
promising process for fixable electrical devices, such as sensors,
medical devices, communication devices, optical devices, and
energy-storage devices [18,20–27]. In et al. [24] demonstrated a
flexible supercapacitor with a specific capacitance of about
800 lF�cm�2 at a 10 mV�s�1 scan rate, based on femtosecond
laser-induced porous carbon on a PI substrate. Li et al. [28] deve-
loped the laser direct writing of graphene oxide (rGO) with gold
Fig. 1. (a) Cross-section of the 3L electrode. (b) Specific capacitances of the MSCs calculat
(CEs) with different connections are inserted at the bottom of the figure. (c) GCD cur
(Reproduced from Ref. [29])
(Au) nanocomposite MSCs with an areal capacitance of 0.46
mF�cm�2 at a high scan rate of 100 V�s�1. Cai et al. [26] utilized a
405 nm semiconductor laser to irradiate a PI sheet in order to pre-
pare the carbon electrodes (CEs) of supercapacitors. The obtained
supercapacitors exhibited a high performance of about
31.9 mF�cm�2 at a current density of 0.05 mA�cm�2, as a result of
the hierarchical porous structures and thick CEs that were formed
during the laser writing process.

Wang et al. [29] reported a novel fabrication process in which a
3D laser direct writing technique was used to fabricate multilayer
MSCs via a bottom-to-top process on a PI substrate. Fig. 1(a) shows
a scanning electron microscope (SEM) image for the cross-section
of the three-layer (3L) MSCs. In order to realize a stable intercon-
nection, the conductive layers were partially overlapped with a
total thickness of around 140 lm for the 3L MSCs. First, the fem-
tosecond laser was focused at a position 80 lm below the surface
of the PI sheets by a 50� objective lens to induce the carbonization
of the bottom layer. The second carbonization layer was then writ-
ten by the focused laser at a position 65 lm below the surface of
the PI sheets, thus creating the middle layer. Finally, the focusing
laser was adjusted to the surface of the PI sheets in order to realize
surface carbonization. After the laser writing, the carbonized elec-
trode was treated with plasma for 5 min in order to change the
wetting property from hydrophobic to hydrophilic. This process
results in more contact area between the electrolyte and the
CEs; it also helps with the permeation of the electrolyte. Next,
polyvinyl alcohol-sulfuric acid (PVA-H2SO4) was applied to the
electrodes as the electrolyte for the measurement of the capacitor
performance. Before the measurements were taken, the MSCs were
left at room temperature overnight in order to dry the electrolyte
completely. Fig. 1(b) presents the specific capacitance values of
one-layer (1L), two-layer (2L), and 3L MSCs at different current
densities, as calculated from the galvanostatic charge/discharge
(GCD) curves. In particular, the 3L stacked MSCs show a specific
capacitance as high as 42.6 mF�cm�2 at a current density of
0.1 mA�cm�2, which is much higher than the 2L MSCs that have
been reported elsewhere [14,24,26]. This improved capacity can
be attributed to the porous thick electrode and to the nitrogen
(N) atoms that partially replace the carbon (C) atoms in the graphi-
tic carbon framework.
ed from the GCD curves as a function of the current density. Photos of the fabricated
ves of MSCs with four kinds of connections at a current density of 0.1 mA�cm�2.



Fig. 2. (a) A fabricated CE; (b) a fabricated sensor array. (Reproduced from Ref. [48])
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Moreover, in order to increase the operating voltages and cur-
rents of the MSCs, series-parallel connected MSCs were created
using laser direct writing technology. Fig. 1(b) contains inserted
images showing different MSCs connected in parallel, series, or
combination on a single PI substrate. Fig. 1(c) displays the cyclic
voltammetry curves for different connections of MSCs at a scan
rate of 10 mV�s�1. Compared with a single MSC, two parallel con-
nected MSCs give a double output current (red curve). Two series
connected MSCs enlarge the voltage window from 1 to 2 V (blue
curve), while the output current declines to half of that of the sin-
gle MSC. A 2 � 4-combination connected MSC can double the volt-
age and output current (green curve). These results indicate that an
MSC with diverse connections can meet the demands of different
working voltages and currents. Due to the superior performance
of carbon-based MSCs, femtosecond laser direct writing technol-
ogy is an effective and advanced manufacturing technology for
on-chip energy-storage devices. Furthermore, 3D laser direct writ-
ing has been developed not only to fabricate multilayer superca-
pacitors, but also to fabricate field-effect transistors, which will
become a significant benefit for biosensor and certain power appli-
cations [30,31].

2.2. A multi-flavor detection flexible smart sensor array fabricated by
femtosecond laser direct writing

Biosensors are another promising application for laser-induced
porous graphene [21,32]. Bio-nanosensing technology has been
developed for biomedical diagnostics [33]; environmental pollu-
tion monitoring [21,34]; and the measurement of temperature
[35], humidity, and other physical parameters [36–39]. The general
drawback of these sensors is that they are specifically designed for
a particular objective. Porous carbon structures with a very high
surface-to-volume ratio can be functionalized with an aptamer
for specific sensing. However, for a pristine sensor without an apta-
mer coating, the sensor presents a very limited selectivity and is
considered to be nonselective.

The concept of an electronic nose was first reported by Persaud
and Dodd in 1982 [40]. An array of chemical sensors was used to
simulate receptors and neural analysis in order to recognize a pat-
tern of stimulations through pattern-recognition methods [40].
The name ‘‘electronic tongue” was presented in 1985 by Otto and
Thomas [41], who demonstrated a liquid analysis system based
on a multisensory array. The development of a multi-array sensing
system underwent further rapid progress in the early 2000s.
Although many sensing techniques have been developed for elec-
tronic tongue application, including optical and enzymatic sensors
[42–44], the electrochemical or voltammetric-based sensor is still
one of the most widely used sensing techniques [45].

Promising results have recently been demonstrated for biosens-
ing using a sensor array for multi-element detection. Facure et al.
[46] reported a novel electronic tongue system for the detection
of organophosphate pesticides. Their sensing system contained
four gold-electrode sensing units, which were functionalized with
rGO or Au nano-particles, respectively. The sensing system suc-
cessfully detected cadusafos and malathion at concentrations as
low as 0.1 mmoL�L�1. Zhao et al. [47] reported an e-nose sensing
array for the detection of volatile organic compounds (VOCs). Each
VOC element was carried by nitrogen (N2) gas and delivered to the
sensing setup, with the concentration of the VOCs being controlled
by the pressure ratio of N2 gas and VOC vapor. Seven targeted com-
pounds—ethanol, isopropyl alcohol (IPA), acetone, methanol, hex-
ane, cyclohexane, and heptane—were detected by seven sensing
units with a concentration range of P/P0 from 0.1 to 0.8, where P
stands for the partial pressure and P0 stands for the saturated vapor
pressure of the VOCs at room temperature. It is notable that most
of these sensing array systems were fabricated using a cleanroom
technology, which is more complicated than the laser direct writ-
ing presented in this paper.

Here, we report on our recent work with a flexible sensor
array fabricated by femtosecond laser direct writing for multi-
flavor detection [48]. A femtosecond laser with a wavelength of
1030 nm was used as the laser source, and the laser was focused
onto the surface of a PI substrate. During laser irradiation, the
substrate was carried by a 3D programmable stage in order to
create different pre-programmed patterns. For this experiment,
CEs were fabricated at a laser power of 600 mW with a writing
speed of 60 mm�min�1. Fig. 2(a) shows the fabricated CEs on a
PI substrate, which is presented as a single measurement unit
in this study. Fig. 2(b) displays a sensor array with six sensing
units. Integrating the responses from different measurement units
into a single sensor array implements cross-sensitivity; as a
result, the system responds to different analytes without func-
tionalization with probe molecules for specific analytes [49]. In
order to enhance the selectivity and sensitivity of a sensor sys-
tem, it is considered ideal to have a significant response differ-
ence between two measurement units corresponding to the
same analyte. Six different types of sensor units were prepared
by different surface treatments on CEs in order to achieve elec-
tronic tongue-style sensing.

For sensor functionalization, different surface treatments were
performed on the laser-induced CEs surface. Six different elec-
trodes constituted a sensor array for the measurement, as follows:
a CE gold-plated carbon electrode (GCE), rGO drop-coated carbon
electrode (rGO-CE), rGO drop-coated gold-plated carbon electrode
(rGO-GCE), polyaniline-deposited carbon electrode (PANI-CE), and
polyaniline-deposited gold-plated carbon electrode (PANI-GCE).
Fig. 3(a–f) provides typical SEM images of the surface structures
for each electrode sample.

As shown in Fig. 4, the separation and grouping of datasets
were observed after principal component analysis (PCA). In addi-
tion, linear dependencies were observed with changes in sample
concentration. The sodium chloride (NaCl) samples are grouped
at the mid-left side of the plot. As the concentration of NaCl
decreases, the data points move to the right, and some changes
occur in the vertical direction. The vinegar samples show a very
clear linear dependence as the samples are diluted from 100%
to 1%. The data points move from the left side to the right side
of the plot and gradually rise. Furthermore, a clear linear depen-
dency can be observed for the sugar samples, with the data points
being grouped on the right side of the plot. With a decrease in
concentration, the dataset moves to the top. This PCA graph
demonstrates that this sensor array system can determine differ-
ent targets—in this case, NaCl, vinegar, and sugar. By grouping the
data points and mapping them on the graph, the sensor array sys-
tem can be used to differentiate between NaCl, vinegar, and sugar
solutions.



Fig. 3. SEM images of (a) CE; (b) rGO-CE; (c) PANI-CE; (d) GCE; (e) rGO-GCE; (f) PANI-GCE. (Reproduced from Ref. [48])

Fig. 4. Principal component factor scores obtained for target solutions. PC1 and PC2 represent the directions in which the data show the largest and second largest variations.
(Reproduced from Ref. [48])

782 Y. Yu et al. / Engineering 4 (2018) 779–786
3. Microfluidic SERS chips fabricated by all-femtosecond-laser
processing

SERS has a superior ability to detect analytes adsorbed on the
surface of nano-sized metal structures with extremely low concen-
tration in the analysis of various material [50–52], chemical
[53,54], biological [55,56], and environmental specimens [57,58].
The enhanced Raman scattering of molecules adsorbed on rough
metal surfaces [59] is a result of localized surface plasmon reso-
nance (LSPR) [60], in which an enormous optical near-field
enhancement is motivated by the excitation of a collective electron
oscillation [61]. Experiments show that the enhancement factors
are in the range of 106–108 [62]. The electromagnetic field inten-
sity on a SERS substrate is further determined by the surface
geometries of the metal nanostructures, including shape, size,
and layout [50,61,63]. In 2016, Lin et al. [64] reported on a SERS
system with hexagonal-packed silicon nanorod (SiNR) arrays
coated with Au nanoparticles. This SERS system provided an
enhancement factor of 1 � 107 with a standard deviation of
3.9%–7.2% for detecting Rhodamine 6G (R6G) molecules.
By employing unique femtosecond laser-metal interaction, it is
possible to fabricate highly sensitive plasmonic substrates for SERS
application. In 2014, Yang et al. [65] reported a SERS application
using microgrooves on Si substrates. These grooves were directly
created on a Si substrate by laser ablation. With the deposition of
silver (Ag) film, the SERS chip exhibited an enhancement factor
of 5.5 � 106 at an excitation wavelength of 532 nm. Recently, Bai
et al. [66] developed a SERS device with an enhancement of
1 � 108 and a relative standard deviation of 8.8%. The SERS chip
was fabricated by all-femtosecond-laser processing with no bond-
ing procedures and no lithography for both micro and nanostruc-
turing on glass substrates.

It has long been known that it is very challenging to fabricate a
3D metallic nanostructure (height > 1 lm) in a closed space with
controlled patterns, since the nanostructure must be generated in
the expected area and then grow into the desired sizes and shapes.
In Bai’s recently reported method [66], the linear patterns are first
generated by laser-induced periodic surface structures (LIPSSs).
The orientation of the LIPSS is parallel to the laser polarized direc-
tion. Next, the surface is irradiated again with the laser after the
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polarization direction has been rotated by 90�. The two sets of
orthorhombic LIPPS can form pseudo-ordered nanorod arrays for
highly sensitive SERS. Online real-time SERS monitoring has been
successfully realized with the use of such a microfluidic SERS chip
[56].

The fabrication process is roughly divided into three steps: first,
microchannel fabrication in a glass substrate by femtosecond laser
direct patterning and laser-assisted wet etching; second, laser
selective metallization of the copper (Cu)–Ag layered thin film
inside the microchannel; and third, formation of a 2D periodic
metal nanostructure by means of a femtosecond laser-induced
periodic surface structure. Fig. 5 illustrates these process steps
[66].
Fig. 5. The procedure used to fabricate a 3D microfluidic SERS chip by
all-femtosecond-laser processing. (a) Femtosecond laser-assisted wet etching;
(b) femtosecond laser selective metallization; (c) laser-induced periodic surface
structure. (Reproduced form Ref. [66])

Fig. 6. Optical micrographs of (a) the microchannel embedded in the glass substrate; an
microchannel. The bottom parts of the figure show SEM images of the Cu film morpholo
Ref. [66])
Fig. 6 shows the microstructure details of the SERS chip [66]. A
microchannel was embedded in a glass substrate by femtosecond
laser-assisted wet etching, as shown in Fig. 6(a). A femtosecond
laser with a pulse duration of 457 fs, a central wavelength of
1045 nm, and a repetition rate of 100 kHz was employed for the
direct patterning and etching process in order to obtain 3D
microchannels in glass. The laser power and scanning speed were
set to 25 mW and 1.5 mm�s�1, respectively. An extremely smooth
surface with a nanoscale roughness was obtained after thermal
annealing of the glass substrate. Fig. 6(b) shows an image of the
inside wall of the microchannel modified by femtosecond laser
ablation in water. The laser power was set at about 80 mW during
irradiation. Obvious jagged grooves were created in the ablated
area. The size of the ablation area was 30 lm � 30 lm with a line
width of 5 lm, and the final roughness was increased to 0.3 lm. A
Cu–Ag layer film was then deposited on the ablated area through
the electroless plating of first Cu and then Ag by means of a gal-
vanic displacement process. The mixing of Cu and Ag was intended
to optimize the microstructures and SERS enhancement. Fig. 6(c)
shows an SEM image of the surface morphologies of the deposited
Cu–Ag film. The size of the grains ranged from 6 to 10 lm, and the
film had an approximate thickness of 600 nm. In order to reduce
the thickness of the film and the roughness, polyvinyl pyrrolidine
(PVP) was added to the plating solution. This allowed the film
thickness to be reduced to around 400 nm.

Fig. 7 shows SEM images of the periodic metal nanostructures
that were fabricated by means of a femtosecond laser [66]. No sur-
face nanostructures were formed at a laser power lower than
20 mW. When the laser power was increased, a 250 nm nanograt-
ing formed at a laser power of 30 mW, as shown in Fig. 7(a). How-
ever, when the laser power was increased further to 50 mW, laser
irradiation did not produce a high spatial-frequency periodic sur-
face structure (HSFL); instead, it deposited a large amount of
devoirs, which covered most of the surface (Fig. 7(b)). Through a
d (b) the femtosecond laser-ablated area on the bottom surface of the closed glass
gy obtained (c) without and (d) with polyvinyl pyrrolidine (PVP). (Reproduced from



Fig. 7. SEM micrographs of the periodic metal nanostructures fabricated by irradiation with a linearly polarized femtosecond laser at a scanning speed of 1.5 mm�s�1 and
laser power levels of (a) 30 mW and (b) 50 mW; and at a laser power level of 30 mW and a scanning speed of (c) 0.25 mm�s�1 and (d) 1.5 mm�s�1. (Reproduced from Ref. [66])
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comparison with multiple experimental results, 30 mWwas deter-
mined to be an appropriate laser power. The laser scanning speed
was similarly determined through a number of attempts. At a low
scanning speed (0.25 mm�s�1), an HSFL with a clear grid pattern
was formed; however, due to a large amount of material
being removed, plenty of debris was deposited on the surface
(Fig. 7(c)). On the other hand, at a high scanning speed, the grain
size distribution became wider. In subsequent trials, a scanning
speed of 1.5 mm�s�1 and a laser power of 30 mW were employed
in order to optimize the nanostructures. Fig. 7(d) shows a clear
2D nanodot array with an average width of 200 nm and a height
of 250 nm; this was created by femtosecond laser nano-
engineering with the aforementioned parameters.
Fig. 8. (a) SERS spectra of R6G solutions with varying concentrations on the 2D period
spectrum of the Fortuna glass. The inset shows the Raman spectrum of 10�2 moL�L�1 R6
peak over time while injecting Cd2+ solutions with various concentrations. The inset show
(Reproduced from Ref. [66])
Fig. 8(a) presents the Raman spectra of R6G solutions at concen-
trations ranging from 10�5 to 10�9 mol�L�1. The Raman peaks
gradually decrease as the concentration of R6G decreases. When
the concentration is lower than 10�9 mol�L�1, the Raman peaks
became hardly observable, which illustrates the detection limit of
10�9 mol�L�1 for R6G detection. The inset of Fig. 8(a) repents the
Raman spectrum of 10�2 mol�L�1 R6G on flat glass enlarged five
times. A comparison of these two graphs reveals a very consider-
able enforcement of the Raman spectrum for the SERS chip.
Fig. 8(b) shows the results from the real-time SERS sensing of cad-
mium ion (Cd2+) solutions with varied concentrations. When Cd2+

solutions with different concentrations were injected into the
microchannel, intensity changes in the SERS were observed as a
ic Cu–Ag nanostructured SERS substrate, where the yellow line corresponds to the
G on flat glass enlarged five times. (b) The intensity of the 10�5 mol�L�1 CV Raman
s a magnified image of the region circled with a red dashed line from 0.01 to 1 ppm.
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function of solution concentration over time. Each solution was
injected over a period of 1.5 min with a flow rate of 10 lL�min�1,
and the spectra were recorded for 10 s.

In a further reduction of the detection limit, Yang et al. [67]
reported a SERS platform based on slippery liquid-infused porous
surfaces (SLIPS) inspired by the pitcher plant. This superhydropho-
bic slippery substrate was created by dipping a nano-textured sur-
face into a perfluorinated liquid. In the experiment, ethanol was
selected to represent a non-aqueous liquid. R6G was selected as
a target element in order to demonstrate the detection limit. Au
nanoparticles were added to the solution to create ‘‘hotspots” for
SERS measurements. For the measurements, 50 lL of R6G ethanol
solutions with different concentrations of R6G were dropped onto
the platform surface. After the ethanol fully evaporated, a close-
packed R6G/Au aggregate of approximately 150 lm in diameter
formed, which was used for the SERS detection. The results showed
that 750 mol�L�1 of the R6G molecule was detected with over 90%
systematically quantified probability, and a minimum of
75 mol�L�1 with 1.4% probability. Thus, with the further develop-
ment of laser precision machining, it is possible to produce bio-
inspired nanostructures for SERS measurements.

4. Conclusions

In this paper, three works involving the precise laser processing
of a multilayer supercapacitor array, a smart sensor array, and
microfluidic chips for SERS analysis were reported on and dis-
cussed in detail. The microscale devices were fabricated on trans-
parent polymeric materials and glass substrates. These works
demonstrate that material properties and microstructures can be
controlled by means of an ultrafast laser, with suppression of ther-
mal diffusion. High-resolution fabrication with various materials
using focused ultra-short laser pulses has been demonstrated for
high energy-density storage and super-sensitive sensing. These
3D structured micro-/nano-scale components and devices thus
demonstrate successful laser precision manufacturing for optical,
electrical, and lab-on-a-chip applications.
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