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This paper presents a dual-platform scanner for dental reconstruction based on a three-dimensional (3D)
laser-scanning method. The scanner combines translation and rotation platforms to perform a holistic
scanning. A hybrid calibration method for laser scanning is proposed to improve convenience and preci-
sion. This method includes an integrative method for data collection and a hybrid algorithm for data pro-
cessing. The integrative method conveniently collects a substantial number of calibrating points with a
stepped gauge and a pattern for both the translation and rotation scans. The hybrid algorithm, which con-
sists of a basic model and a compensation network, achieves strong stability with a small degree of errors.
The experiments verified the hybrid calibration method and the scanner application for the measurement
of dental pieces. Two typical dental pieces were measured, and the experimental results demonstrated
the validity of the measurement that was performed using the dual-platform scanner. This method is
effective for the 3D reconstruction of dental pieces, as well as that of objects with irregular shapes in
engineering fields.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dental cavity preparation is a basic clinical operation skill in
oral medicine. The cavity, which is used to contain filler material
in order to restore the shape and function of the tooth, is formed
by removing caries lesion with dental surgery. Rigorous criteria
for the cavity in terms of depth, length, width, and angle make
its assessment an important work in clinical teaching. Digital
assessment that uses computer-assisted three-dimensional (3D)
reconstruction has now become an important means for dental
teaching; however, the digital assessment systems that are mainly
used are expensive and still need to be improved in terms of blind
area and precision [1,2]. 3D laser scanning has the advantages of
high precision, fast speed, and easy implementation [3–6]. This
method projects the laser onto the object and collects images of
the object with the laser stripe, thus actively forming triangle
similarity relationships between the images and objects. Calibra-
tion is critical for laser scanning, as it determines the validity
and precision of the measurement results.

There are two main problems in calibration. The first is the
question of how to collect a substantial number of accurate
calibrating points using appropriate methods. The wire-drawing
method [7] and dentiform bar method [8] that were proposed early
depend on expensive external equipment and gain few calibrating
points. AlthoughHuynhet al. [9] achievedhigh-precision calibrating
points based on the invariance of the cross-ratio, these calibrating
points are sometimes insufficient. At present, a planar target is
widely used to collect the calibrating points due to its simple
fabrication and flexible operation [10–12]. For a rotation scan, the
rotation axis must also be calibrated [13–15]. Most of the above-
mentioned methods involve complicated artificial operations.
Convenient calibration is becoming important, because recalibra-
tion must be done frequently in order to eliminate errors caused
by movements or environmental changes.

The second problem is how to calculate the parameters using an
appropriate algorithm. Calibration algorithms can be divided into
two types: the mathematical method and the machine-learning
method. The mathematical method establishes mathematical for-
mulas according to the principle of 3D laser scanning. Due to imag-
ing restorations, structure errors, and other uncertainties,
complete and precise mathematical formulas usually turn out to
be very complex. The machine-learning method builds transforma-
tion relations between image coordinates and spatial coordinates
directly using artificial neural networks (ANNs) and genetic algo-
rithms [16,17]. As a black box algorithm, the machine-learning
method does not require camera calibration and mathematical
formulas; however, it has disadvantages such as low convergence
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and poor generalization. This paper presents a dual-platform scan-
ner for dental reconstruction and assessment, and proposes a
method of hybrid calibration for laser scanning to improve the con-
venience and precision.

2. Methodologies

2.1. Laser scanning

In 3D laser scanning, when the line of the laser is projected onto
the object being measured, an image of the part of the object with
the light stripe is acquired by the camera, as shown in Fig. 1. If P is
a point on the object being measured, its image P0 appears to be on
the light stripe in the image plane when it is scanned by the laser.
The world coordinates frame owxwywzw describes the 3D informa-
tion of the object. The camera coordinates frame ocxcyczc and the
image coordinates frame o0xy are established with an origin of oc

and o0, where oc is the optical center and o0 is the intersection of
the optical axis and image plane. The distance between oc and o0

is f , which is also called the focal length. The pixel array on a com-
plementary metal-oxide semiconductor (CMOS) camera is
expressed by ouv . As the position of P0 in the ouv can be found
through image processing, the principle is to derive the transfor-
mation from ouv to owxwywzw.

If the subscript of o0 in the pixels array is u0; v0ð Þ, then the
transformation from ouv to o0xy is

x ¼ sx u� u0ð Þ
y ¼ sy v � v0ð Þ

�
ð1Þ

where sx and sy, as given by the camera manufacturer, are the
physical dimensions of a pixel on the CMOS camera in the
corresponding direction.

In the ideal pinhole imaging model of the camera, the propor-
tional relationship between P xc; yc; zcð Þ and P0 x; yð Þ is
xc
x
¼ yc

y
¼ zc

f
ð2Þ

The transformation from o0xy to ocxcyczc is based on this pro-
portional relationship, which is usually expressed in the form of
a homogeneous matrix, as follows:

zc

x

y

1

2
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3
75 ¼

f 0 0
0 f 0
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2
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3
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yc
zc
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Meanwhile, a rigid body transformation occurs between
owxwywzw and ocxcyczc in 3D space. Supposing that R is a 3 � 3 rota-
tion matrix and T is a translation vector, the transformation is
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Fig. 1. Principle of 3D laser scanning.
Thus, we can derive the transformation from ouv to owxwywzw
from Eqs. (1), (3), and (4).
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Eq. (5) is the camera model, whereM1 is the intrinsic parameter
matrix and M2 is the extrinsic parameter matrix. The model can
also be written as a projection matrix M, as shown in Eq. (6).
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In 3D laser scanning, the world coordinates axis xw is usually
parallel to the scanning direction, so xw can be acquired directly
by the scanner. The other 3D information, yw; zwð Þ, is worked out
by eliminating zc in Eq. (6):

yw ¼ m23m34�m24m33ð Þuþ m14m33�m13m34ð Þvþm13m24�m14m23

m22m33�m23m32ð Þuþ m13m32�m12m33ð Þvþm12m23�m13m22

zw ¼ m24m32�m22m34ð Þuþ m12m34�m14m32ð Þvþm14m22�m12m24

m22m33�m23m32ð Þuþ m13m32�m12m33ð Þvþm12m23�m13m22

8>><
>>:

ð7Þ
Eq. (7) is the basic model of 3D laser scanning. This is an ideal

model under ideal conditions. However, a variety of nonlinear dis-
tortions occur in practical application. The main distortions that
affect the imaging results are radial distortion and tangential dis-
tortion [18]. Radial distortion and tangential distortion come from
the shape of the lens and the assembly of the camera, respectively.
Their distortion models are

x ¼ xd 1þ k1r2 þ k2r4 þ k3r6
� �

y ¼ yd 1þ k1r2 þ k2r4 þ k3r6
� �

(
ð8Þ

x ¼ xd þ 2p1yd þ p2 r2 þ 2x2d
� �� �

y ¼ yd þ 2p2xd þ p1 r2 þ 2y2d
� �� �

(
ð9Þ

where xd and yd are real imaging positions; x and y are ideal imag-
ing positions; r2 ¼ x2d þ y2d; k1, k2, and k3 are radial distortion coeffi-
cients; p1 and p2 are tangential distortion coefficients. In this case, f ,
u0, v0, R, T , k1, k2, k3, p1, and p2 need to be determined through
calibration before the scanner begins the measurement.

2.2. Calibration methods

As stated above, calibration establishes the transformation rela-
tionships between the pixel array u; vð Þ and the world coordinates
yw; zwð Þ. In general, there are twokindsofmethod: themathematical
method and the machine-learning method.

The mathematical method establishes mathematical formulas
based on the calibration principle first, and then works out the
unknown parameters of these formulas through nonlinear opti-
mization. The Tsai’s two-step method [19] and the Zhang’s method
[20] are the most widely used forms of the mathematical method.
The Tsai’s two-step method uses a 3D calibration target, while the
Zhang’s method uses a planar calibration target. In the Zhang’s
method, several planes in different positions are used to calculate
the parameters, because points on each plane can be used to set up
two equations. Zhang’s calculated the initial values of the parame-
ters under the assumption of no distortion, and then worked out
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distortion coefficients with these initial values by the least squares
method. Precision is optimized by maximum likelihood estimation.

In the Tsai’s two-step method, since only quadratic radial dis-
tortion is considered, the radial arrangement constraint is applied:

xd
yd

¼ x
y
¼ r1xw þ r2yw þ r3zw þ tx

r4xw þ r5yw þ r6zw þ ty
ð10Þ

Because u0; v0ð Þ can be determined through the optical
method, xd; ydð Þ are known data. The intermediate parameters,
r1=ty, r2=ty, r3=ty, tx=ty, r4=ty, r5=ty, and r6=ty, can be worked out
from Eq. (10), if there are more than seven calibrating points. First,
the extrinsic parameters, R, tx, and ty, are calculated based on the
orthogonality of the rotation matrix. The other parameters, f , k1,
and tz, are approached based on the camera and distortion model
by nonlinear optimization.

The machine-learning method establishes the transformation
relationship between the input u; vð Þ and output yw; zwð Þ directly
by training sample data. In essence, this is a black box method that
requires no intrinsic or extrinsic parameters. ANNs are typical
machine-learning algorithms. For example, the back-propagation
network (BPN, which is a kind of ANN) has been shown to be an
effective method for building nonlinear mapping relationships
with high versatility and precision [21,22]. With the steepest des-
cent method, the BPN can adjust its weights and thresholds to
learn the mapping relationship according to the back-
propagation errors. As shown in Fig. 2, its structure consists of an
input layer, hide layer, and output layer. Each layer has several
nodes that are similar to biological nerve cells.

The learning process of the BPN has two directions. The forward
propagation of data realizes an estimated mapping relationship
from n dimensions to m dimensions, while the back propagation
of errors helps to revise this mapping relationship. In forward
propagation, the input data flow to the hide layer and then to
the output layer. For a nude hk in the hide layer, the value is deter-
mined by the threshold ak, the related input data xi, and the corre-
sponding weights vki:

hk ¼ f 1
Xn
i¼0

vkixi

 !
¼ f 1 XVkð Þ ¼ f 1 Skð Þ ð11Þ

where Vk ¼ ak vk1 vki � � � vkn½ �T, X ¼ 1 x1 xi � � � xn½ �, f 1 is
the activation function, and Sk is the node’s net input. Similarly, for
a nude yj in the output layer, the value is determined by the thresh-
old bj, the related hk, and the corresponding weights wjk.

yj ¼ f 2
Xm
j¼0

wjkhk

 !
¼ f 2 HWj

� � ¼ f 2 Sj
� � ð12Þ

whereWj ¼ bj wj1 wjk � � � wjq
� �T, H ¼ 1 h1 hi � � � hq

� �
, f 2

is the activation function, and Sj is the node net input. In back
propagation, the errors between the desired output and the actual
output are used to adjust the weights and thresholds in order to
Fig. 2. Structure of a three-layer BPN.
minimize the global error function. If the size of the learning sam-
ples is P, then the global error function is:

E ¼
XP
p¼1

Ep ¼ 1
2

XP
p¼1

Xm
j¼1

tpj � ypj
� �2

ð13Þ

where Ep is the error of the pth sample and tpj is the desired output.
Changes in the weights and thresholds are calculated based on the
partial differential of Ep with a learning rate of g, which in the out-
put layer and the hide layer is:

Dwjk ¼ �g oE
ov jk

¼
XP
p¼1

�g oEp

owjk

	 


Dvki ¼ �g oE
ovki

¼
XP
p¼1

�g oEp

ovki

	 


8>>>>><
>>>>>:

ð14Þ

Eq. (14) can be deduced into a specific form through the chain
rule:

Dwjk ¼
PP
p¼1

Pm
j¼1

g tpj � ypj
� �

f 02 Sj
� �

hk

Dvki ¼
PP
p¼1

Pm
j¼1

g tpj � ypj
� �

f 02 Sj
� �

wjkf
0
1 Skð Þxi

8>>>><
>>>>:

ð15Þ

The network structure gives the BPN a strong nonlinear map-
ping ability. To apply the BPN, u; vð Þ and yw; zwð Þ are seen as input
and output data. The calibration can be completed by a learning
process based on Eqs. (11), (12), and (15).

The mathematical method is specific and robust, but it is diffi-
cult to work out the mass of the parameters. The mathematical for-
mulas usually only concern the main distortions to be kept simple,
which makes the formulas unable to handle other nonlinear factors
and uncertainties. The machine-learning method can deal with all
the imaging restorations, structure errors, and other uncertainties.
Thus, it seems to be quite appropriate for the calibration of laser
scanning. However, the expected results cannot be achieved in
practice. In addition, this method is apt to plunge into the local
minimum, in what is known as over fitting or poor generalization.
Poor generalization means that the network performs rather worse
with testing samples than with training samples. In this case, only
the calibrating points can be measured. In general, the distortions
and errors are two orders of magnitude smaller than the ideal val-
ues determined by the basic model. Both the mathematical and
machine-learning methods process the data directly, which causes
the distortions and errors to be concealed by the ideal values. This
is an important influencing factor on precision that has been
ignored. It can be revealed by normalization, which is a common
step in data processing:

Yi ¼ yi � ymin

ymax � ymin
¼ 1þ ei=f ið Þ � fmin=f i þ emin=f ið Þ

fmax=f i þ emin=f ið Þ � fmin=f i þ emin=f ið Þ
� f i � fmin

fmax � fmin

ð16Þ

where y is the sample data, which consists of the ideal value f and
the residual part e that contains distortions and errors. In Eq. (16),
both sides are divided by f i. Since e=f is close to zero, the final nor-
malization value is close to that of the ideal model.

3. The dual-platform laser scanner

In this paper, a dual-platform laser scanner based on the laser-
scanning principle is designed for the 3D reconstruction of dental
pieces. In dental cavity preparation, the cavity may be on the front
or lateral of a tooth. Dental pieces with a cavity on the lateral can
only be scanned by means of a rotation platform, whereas those



Fig. 4. Experimental facilities for the dual-platform laser scanner. (a) The dual-
platform laser scanner; (b) the translation platform and gauge; (c) the rotation
platform and pattern.
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with a cavity on the front are suitable for a translation platform.
The dual-platform structure makes it possible to scan all types of
dental model with the 3D laser scanner system. As shown in
Fig. 3, the scanner consists of two cameras, a laser transmitter,
and two platforms. The rotation platform is fixed to the translation
platform, so it is possible to switch over the working platform
through the translation platform. When in rotation scan mode,
the rotation center Or is moved in the laser plane according to
the mark on the rotation platform. The rotation platformmaintains
a dip, b, with the horizontal xwowyw plane in order to ensure that
the object can be scanned entirely. Two cameras are used in the
system to collect images from different sides; this effectively
eliminates blind areas and ensures the integrity of the point cloud.

In the translation scan, the direction of the xw axis is set parallel
to the movement of the translation platform. This direction is per-
pendicular to that of the laser plane, which is also the plane of
ywowzw. When the system operates, the xw coordinates are
obtained from the control module of the translation platform.
Simultaneously, yw; zwð Þ are calculated based on the calibration
results. In the rotation scan, the scanner obtains a set of two-
dimensional (2D) physical coordinates yw; zwð Þ each time the rota-
tion platform revolves. These physical coordinates must be trans-
formed and assembled into the 3D point cloud xwr; ywr; zwrð Þ.
There are two steps in this process. First, eliminate the tilt of the
rotation platform with the dip b and the rotation center
Or yr; zrð Þ, as shown in Eq. (17). Second, assemble the physical coor-
dinates together one by one according to the rotated angle h, as
shown in Eq. (18). The rotated angle h can be obtained from the
control module of the rotation platform, whereas b and Or yr; zrð Þ
need additional calibration.
y0w
z0w

� �
¼ cosb � sin b �yr

sinb cos b �zr

� � yw
zw
1

2
64

3
75 ð17Þ
xwr

ywr

zwr

2
64

3
75 ¼ y0w z0w

� � � sin h cos h 0
0 0 1

� �
ð18Þ

A dual-platform laser scanner was constructed, as shown in
Fig. 4(a). Each camera had a resolution of 1280 � 1024 and an
effective view field of 20 mm � 18 mm. The physical dimensions,
sx and sy, of a pixel were 5.2 lm � 5.2 lm. The calibration target
for the translation scan was a stepped gauge with five smooth
treads, as shown in Fig. 4(b). Each step had a height of 2 mm,
and a length and width of 20 mm � 5 mm. The calibration target
for the rotation scan was a pattern, as shown in Fig. 4(c). A white
circle with a diameter of 10 mm was positioned in the middle.
Fig. 3. Design of the dual-platform laser scanner.
4. Hybrid calibrations

For the dual-platform scanner, calibration involves finding the
coordinate transformation from image coordinates to world coor-
dinates in the translation scan first; next, the dip b and Or yr; zrð Þ
is found in the rotation scan. We use an integrative method to col-
lect the calibrating points. The integrative method can conve-
niently collect a substantial number of calibrating points and can
perform an integrative calibration for both the translation and
rotation scans. Furthermore, we propose a hybrid algorithm to
establish an effective model. This hybrid algorithm can achieve
higher precision by combining the mathematical and machine-
learning methods.

4.1. Integrative method

In the calibration of the translation scan, the stepped gauge is
placed on the translation platform. When the stepped gauge moves
with the translation platform, the laser projects onto different
treads. The images of the treads obtained with the laser can be pro-
cessed to extract a substantial number of calibrating points. The
centers of the light stripe on the image are extracted as image coor-
dinates through the Gaussian fitting method [23], while the world
coordinates are gained from the physical dimension. In addition,
the transformation of coordinates from image coordinates to world
coordinates can be performed through the hybrid algorithm. In the
calibration of the rotation scan, the pattern is pasted on the rota-
tion platform. The coordinates of a line on the rotation platform
are gained through transformation. The dip b is calculated by the
slope of this line. Because the center of rotation is on the laser
plane, Or can be determined through two images that are snapped
before and after rotating by 180�. As shown in Fig. 5, P1 refers to
the endpoints of the light stripe on the pattern. The corresponding
points after rotating by 180� are referred to as P0

1. P1 and P0
1 are

symmetrical to Or, which can be used to calibrate Or yr; zrð Þ. In gen-
eral, it is necessary to collect data and perform the calibration sev-
eral times; the average result is the final result. Next, P2 and P0

2 are
used to calculate the error in the calibration results after these
results are obtained.

4.2. Hybrid algorithm

Based on the discussion on calibrating algorithms, we propose a
hybrid algorithm that combines the mathematical method and the



Fig. 5. The symmetrical property of the rotation scan. (a) Initial position;
(b) rotated 180�.
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machine-learning method. In this hybrid algorithm, the mapping
relationship is divided into two parts: the main part and the com-
pensation part. The main part is determined by the basic model of
laser scanning, while the compensation part contains all the distor-
tions and errors, as shown in Fig. 6. The final mapping relationship
is made up of the basic model and the network. To establish the
hybrid model, the mathematical method is used first in order to
work out the basic model. Next, taking the residual between the
main part and the real value as the output, the machine-learning
method is used to establish the network.

The basic model is provided in Eq. (7); this can be replaced by
the following:

yw ¼ a1uþ a2v þ a3
a7uþ a8v þ a9

zw ¼ a4uþ a5v þ a6
a7uþ a8v þ a9

8>><
>>: ð19Þ

Its matrix form is

UA ¼ Y ð20Þ
where

A ¼ a1 a2 a3 a4 a5 a6 a7 a8 a9½ �T
Y ¼ yw zw½ �T

U ¼ u v 1 0 0 0 ywu ywv yw
0 0 0 u v 1 zwu zwv zw

� �
In calibration, since there are far more calibrating points than

unknowns, a1 – a9 can be worked out through the least squares
method:

A ¼ UTU
� ��1

UTY ð21Þ

The BPN is used as compensation in order to learn the mapping
relationship of the distortion and errors. The input data are the pix-
els array (u, v), while the output data are the residual E ex; ey

� �
between the main part and the real value Yreal.

E ¼ Y real � UA ð22Þ
The network has three layers, with two nodes in the input layer

and two nodes in the output layer. The hybrid algorithm is superior
to the mathematical and machine-learning methods, as it combi-
nes the advantages of both methods while overcoming their short-
comings. When compared with a pure mathematical method, the
hybrid model is more complete than the mathematical formulas,
because all the distortions and other errors can be compensated
for by the network. When compared with a pure machine-
Fig. 6. The hybrid algorithm.
learning method, the hybrid model is more specific and robust,
because it is no longer a black box network. The basic model
ensures the main part of the mapping relationship and improves
the generalization ability, which can limit the generalization error
to the residual level of E ex; ey

� �
. The hybrid algorithm has higher

precision in calibration, because it can diminish the influence of
ideal values on the distortions and errors. It divides the mapping
relationship into two parts at the beginning, thus avoiding the con-
cealing problem shown in Eq. (16).

5. 3D reconstruction

The result of laser scanning is point-cloud data, which needs to
be simplified and reconstructed in order to restore the 3D shape of
the object.

5.1. Point-cloud reduction

The initial point cloud contains many redundant points; this
increases the amount of computation and reduces the efficiency
of reconstruction. Therefore, it is necessary to simplify the point
cloud before triangulation. We propose a point-cloud simplifica-
tion method in order to process point-cloud data according to
the morphological characteristics of the point cloud. This method
has higher processing efficiency and a better streamlining effect.

For the point cloud that is obtained by translational scanning, the
density of the point-cloud distribution is larger in the direction of
the light bar and smaller in the scanning direction; therefore, there
aremany redundant points in the direction of the light bar, as shown
in Fig. 7. In order to preserve the feature information of the point
clouds, it is necessary to calculate the distance between adjacent
points on the stripe. If the distance is greater than the threshold,
these points contain more feature information and should be pre-
served. The rest of the points are sampled randomly according to
the density of the point clouds in the scanning direction.

For the point cloud that is obtained by rotational scanning, the
point-cloud data are radially distributed around the rotational cen-
ter. The closer it is to the rotational center, the higher the point-
cloud density is and the more redundant points there are, as shown
in Fig. 8. Therefore, the point-cloud data can be divided into n con-
centric circle regions around the center of rotation. The radii of the
concentric circle are r,

ffiffiffi
2

p
r,

ffiffiffi
3

p
r, . . .,

ffiffiffi
n

p
r and the area of each con-

centric circle is equal. According to the distribution characteristics
of point clouds, the number of points in each ring is proportional to
Fig. 7. The translational scanning point cloud.



Fig. 8. The rotational scanning point cloud.
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the width of the ring. If the ratio is k, the point-cloud density of the
first ring is

qi ¼
k

ffiffiffiffiffiffiffiffiffiffi
iþ 1

p �
ffiffi
i

p� �
r

pr2
¼ k
pr

ffiffiffiffiffiffiffiffiffiffi
iþ 1

p
�

ffiffi
i

p� �
ð23Þ

According to the density of the point clouds in each concentric
ring, we set a simplified threshold in order to simplify the point
cloud. Finally, a complete point cloud with uniform distribution
and more feature information is obtained.
Fig. 9. Dividing and expanding the original point cloud.

Fig. 10. Image acquisition of the target. (a) First, (b) second, (c) third, (d) forth, and
(e) fifth tread.
5.2. Delaunay triangulation

A triangular mesh occupies less storage space and represents
better surface fineness; thus, it has become the main means of
realizing 3D display in a computer. In general, there are two ways
to triangulate 3D point-cloud data: first, directly triangulating 3D
points; and second, projecting 3D points onto the 2D plane, using
2D plane triangulation to create meshes. The former way has a
large computation and the algorithm is not stable. 2D planar trian-
gulation has a good theoretical basis and good mathematical
characteristics, but it is only suitable for surfaces that are projected
in a certain direction without overlapping.

According to the principle of translational scanning, as shown in
Fig. 3, the point-cloud data obtained by the translational scanning
of line-structured light can actually be regarded as the projection
of the object in the xwowyw plane. Therefore, the translational scan-
ning point cloud represents a surface projected onto the xwowyw
without overlap, which can be directly projected through two
dimensions transformation, using the Watson’s algorithm for tri-
angulation [24]. The Delaunay triangulation process using the
Watson’s algorithm is as follows: ① build a super triangle DE that
contains all the points;② insert a new point from the point set and
connect it to the three vertices of the triangle DE in order to form
the initial mesh; ③ insert a new point and find the ‘‘influence tri-
angle,” which is the triangle containing the point; ④ delete the
common edge of the ‘‘influence triangle” and connect the new
point to the related vertices in order to form a newmesh;⑤ repeat
③ and ④ until all of the points in the point set are processed.

Because of the characteristics of the revolving body, the rota-
tional scanning point cloud has overlapping problems in any direc-
tion. Therefore, point clouds cannot be directly triangulated
through 2D projections. Considering the acquisition process of
the rotational point cloud, the point-cloud data are obtained by
line-structured light projection before tilting and splicing. There-
fore, the rotating point cloud can be tilted and expanded according
to the scanning position by coordinate transformation. The
expanded point cloud has the shape of a linear-structured light
projection and can be triangulated by 2D projection. It is necessary
to combine the triangular mesh together after the point cloud is
triangulated in order to finally obtain the complete subdivision
of the rotating point cloud.

The triangulation of the rotational scanning point cloud can be
summarized as follows: ① divide the rotational point cloud into
four regions, A, B, C, and D, and ensure that A, B, C, and D have over-
lapping boundary points, as shown in Fig. 9;② transform the coor-
dinates of each region with the center of rotation and expand the
point cloud into the shape before tilting and splicing; ③ at this
time, every area forms a surface that does not overlap the
xwowyw plane itself; ④ triangulate the point cloud of each region;
⑤ after the 2D projective triangulation of each region is complete,
put the triangular mesh together to form the complete mesh of the
original point cloud, according to the overlapping boundary points
of the four regions.

6. Experiments and results

Experiments using the Tsai’s two-step method, the BPN
method, and the hybrid method were conducted in order to
demonstrate the validity of the hybrid calibration. Measurement
and reconstruction results after calibration were obtained.

6.1. Calibration

6.1.1. Data collection
The points were collected by placing the stepped gauge on the

translation platform with its first tread under the laser. As the
world coordinates frame was set based on the physical dimensions
of the gauge, the remaining steps were performed automatically
through programmatic control. This section introduces the experi-
ment based on the left camera. The images of the treads that were
collected in the experiment are shown in Fig. 10. A total of 5038
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valid samples were collected after image processing; these were
used for the calibration of the translation scan by establishing
the coordinate transformation. A pair of symmetrical pattern
images that were collected in the experiment is shown in Fig. 11.
Since the interval angle was 15�, a total of 12 pairs of symmetrical
images were used for the calibration of the rotation scan.

6.1.2. Calibration results
Based on the hybrid algorithm, the basic model was worked

out using Eq. (21). The compensation network was a three-layer
BPN with five hide nodes, which was trained 100 times with a
terminal of 10�4. b and Or can be calculated in each pair,
with the average taken as the final value. The parameters of
the basic model and the network are provided below:
A ¼ �0:027 1:038 � 19:580 � 1:997 � 0:003 1262:001½
�0:007 0 44:987�
b¼44:320�

Or 5:451; 4:397ð Þ

VT ¼ V1 V2 V3 V4 V5½ �

¼
6:118 �1:775 �0:246 �0:536 5:575
7:256 1:074 �0:139 �0:295 6:784
1:801 0:184 �0:483 0:548 2:104

2
64

3
75

W ¼ W1

W2

� �
¼ 3:275 1:906 2:209 3:904 2:925 �1:265

�0:351 �0:896 �1:031 1:324 0:425 1:085

� �

Calibrations were also conducted with the Tsai’s two-step
method and the pure BPN method as contrasting experiments.
The calibration results of the Tsai’s method are given below:

f k1 u0 v0½ � ¼ 41:397 0:0001 637 509½ �

b¼44:761�
Fig. 12. Errors in the

Fig. 11. Image acquisition of the pattern. (a) h = 0�; (b) h = 180�.
Or 5:141; 4:580ð Þ

R ¼
�0:859 �0:005 �0:512
�0:021 1:000 0:025
0:511 0:319 �0:859

2
64

3
75

T ¼
�0:282
�11:896
202:904

2
64

3
75

In the pure BPN method, the network was also three layers with
five hide nodes. After being trained 100 times with a terminal of
10�4, its parameters were as follows:

b¼43:832�

Or 5:159; 4:032ð Þ

VT ¼ V1 V2 V3 V4½ � ¼
2:726 0:857 �0:023 �1:067 5:037

�1:424 �1:398 �0:064 �1:738 �0:807
2:514 �0:030 0:197 �0:028 �7:379

2
64

3
75

W ¼ W1

W2

� �
¼ 0:124 0:0256 �0:247 5:097 �0:189 �0:005

�0:077 0:003 0:788 �0:047 0:570 �0:003

� �
6.1.3. Discussion
The stepped gauge was scanned using different methods, and

five equally spaced points were picked up on each tread. In this
case, the points on each tread were uniformly distributed along
the x axis of the image plane, while the treads were uniformly
ordered along the y axis. A reference plane that was 2 mm below
the first tread was also scanned; it imaged on the edge of the pixels
array and was used to test the generalization ability. The distribu-
tion and statistics of the errors are shown in Fig. 12 and Table 1.
The performances of the networks in the pure BPN method and
the hybrid method are shown in Fig. 13. For the rotation scan,
the endpoints on the pattern were picked out in order to calculate
the errors in the rotation scan, as shown in Fig. 14 and Table 1.

As shown in Fig. 12, the Tsai’s method has regular, steady errors.
For the whole gauge, the treads close to the middle had smaller
errors than those close to the edge. For each tread, the points close
to the middle had smaller errors than those close to the edge.
Errors in the reference plane were the worst, but still followed this
regularity. This distribution is very similar to the distortions, which
explains where the errors mainly come from. The root mean square
(RMS) errors in the translation scan and rotation scan were 0.030
and 0.056 mm, respectively. The BPN method seems to
perform better than the Tsai’s method on the treads, even with
translation scan.



Table 1
Error statistics.

Method Maximum error (mm) Minimum error (mm) Mean error (mm) RMS (mm)

T. scan R. scan T. scan R. scan T. scan R. scan T. scan R. scan

Tsai 0.045 0.086 0.014 0.032 0.030 0.054 0.030 0.056
BPN 0.055 0.077 0.004 0.034 0.023 0.058 0.027 0.060
Hybrid 0.027 0.046 0.005 0.015 0.015 0.029 0.016 0.031

T. scan: translation scan; R. scan: rotation scan; RMS: root mean square.
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the irregularly distributed errors. However, on the reference plane,
the errors turned out to be much bigger suddenly, which was
caused by the poor generalization ability of this method. As a
result, the overall RMS of the BPN in the translation scan and rota-
tion scan reached 0.027 and 0.060 mm, respectively. The hybrid
method achieved the best performance in this experiment. It has
the smallest errors when compared with the Tsai’s method and
the BPN method. The RMS of the errors was 0.016 and 0.031 mm.
Fig. 13. Performance of (a) pure BPN and (b) hybrid BPN. MSE: mean squared error.

Fig. 14. Errors in the rotation scan.
The basic model ensures steady errors, even on the reference plane.
The separation of ideal values and errors also improves the perfor-
mance of the network. As shown in Fig. 13, for the network in the
hybrid method, the mean squared error (MSE) drops 0.0014612 at
epoch 19, while that in the pure BPNmethod is 0.0014651 at epoch
932. The convergence rate of the MSE is much faster in the hybrid
method than in the pure BPN method. The dental mold measure-
ment error is required to be less than 0.2 mm, so our measurement
method satisfies the accuracy requirements.
6.2. Measurement

Typical dental pieces measured by means of a translation scan
and rotation scan, respectively, are shown in Figs. 15 and 16. The
measurement results and reconstruction process are shown in
Figs. 17 and 18. Fig. 17(a) is the primary point cloud with a total
of 37 983 points, while Fig. 17(b) is the point cloud after
de-noising and reduction, with a total number of points that has
Fig. 15. A typical dental piece for a translation scan.

Fig. 16. A typical dental piece for a rotation scan.



Fig. 18. Reconstruction of rotation scan. (a) The primary point cloud; (b) point
cloud after de-noising and reduction; (c) the result of the Delaunay triangulation;
(d) the final 3D reconstruction.

Fig. 17. Reconstruction of translation scan. (a) The primary point cloud; (b) point
cloud after de-noising and reduction; (c) the result of the Delaunay triangulation;
(d) the final 3D reconstruction.
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decreased to 6218. Fig. 17(c) shows the result of the Delaunay
triangulation. The final 3D reconstruction is shown in Fig. 17(d).
Fig. 18(a) is the primary point cloud, which contains many redun-
dant points. After reduction, the number of points is reduced from
87 458 to 6267, as shown in Fig. 18(b). The Delaunay triangulation
and the final 3D reconstruction are shown in Fig. 18(c) and (d). The
results meet the requirements for dental application.

7. Conclusions

This paper developed a dual-platform laser scanner and pro-
posed a hybrid calibration method for 3D laser scanning for the
3D reconstruction of dental pieces. The dual-platform scanner
has a low cost and is suitable for different dental pieces. The hybrid
calibration, which includes an integrative method for data collec-
tion and a hybrid algorithm for data processing, achieves conve-
nient operation and high precision. The integrative method is
able to collect a substantial number of accurate calibrating points
by means of a stepped gauge and a pattern with little human
intervention. The hybrid algorithm synthesizes the advantages of
the mathematical and machine-learning methods through the
combination of a basic model and a compensation network. The
calibration experiments verified the excellent performance of the
hybrid calibration, which had strong stability and a small degree
of errors. Two typical dental pieces were measured in order to
demonstrate the validity of the measurement performed using
the dual-platform scanner. This method provides an effective
way for the 3D reconstruction of dental pieces in clinical teaching.

The dual-platform laser scanner can also be applied to the 3D
measurement of objects with irregular surfaces, such as the recon-
struction of sculptures and artifacts, the measurement of complex
industrial parts, and rapid reverse engineering combined with 3D
printing. However, the dual-platform laser scanner is bulky
and not portable. The scanning process is thus limited by the
mechanical platform.

Acknowledgements

The authors are grateful for support from the National Science
Fund for Excellent Young Scholars (51722509), the National
Natural Science Foundation of China (51575440), the National
Key R&D Program of China (2017YFB1104700), and the Shaanxi
Science and Technology Project (2016GY-011).
Compliance with ethics guidelines

Shuming Yang, Xinyu Shi, Guofeng Zhang, and Changshuo Lv
declare that they have no conflict of interest or financial conflicts
to disclose.
References

[1] Welk A, Rosin M, Seyer D, Splieth C, Siemer M, Meyer G. German dental faculty
attitudes towards computer-assisted learning and their correlation with
personal and professional profiles. Eur J Dent Educ 2005;9(3):123–30.

[2] Munera N, Lora GJ, Garcia-Sucerquia J. Evaluation of fringe projection and laser
scanning for 3D reconstruction of dental pieces. Dyna 2012;79(171):65–73.

[3] Geng J. Structured-light 3D surface imaging: a tutorial. Adv Opt Photonics
2011;3(2):128–60.

[4] Zhou W, Guo H, Li Q, Hong T. Fine deformation monitoring of ancient building
based on terrestrial laser scanning technologies. IOP Conf Ser Earth Environ Sci
2014;17:012166.

[5] Andersen UV, Pedersen DB, Hansen HN, Nielsen JS. In-process 3D geometry
reconstruction of objects produced by direct light projection. Int J Adv Manuf
Technol 2013;68(1–4):565–73.

[6] Choi S, Kim P, Boutilier R, Kim MY, Lee YJ, Lee H. Development of a high speed
laser scanning confocal microscope with an acquisition rate up to 200 frames
per second. Opt Express 2013;21(20):23611–8.

[7] Dewar R. Self-generated targets for spatial calibration of structured light
optical sectioning sensors with respect to an external coordinate
system. Cleveland: Society of Manufacturing Engineers; 1988.

[8] Duan FJ, Liu FM, Ye SH. A new accurate method for the calibration of line
structured light sensor. Chin J Sci Instrum 2000;21:108–13. Chinese.

[9] Huynh DQ, Owens RA, Hartmann PE. Calibration a structured light stripe
system: a novel approach. Int J Comput Vis 1999;33(1):73–86.

[10] Zhou F, Zhang G. Complete calibration of a structured light stripe vision sensor
through planar target of unknown orientations. Image Vis Comput 2005;23
(1):59–67.

[11] Sun Q, Hou Y, Tan Q, Li G. A flexible calibration method using the planar target
with a square pattern for line structured light vision system. PLoS One 2014;9
(9):e106911.

[12] Xie Z, Wang X, Chi S. Simultaneous calibration of the intrinsic and extrinsic
parameters of structured-light sensors. Opt Lasers Eng 2014;58:9–18.

[13] Li J, Chen M, Jin X, Chen Y, Dai Z, Ou Z, et al. Calibration of a multiple axes 3D
laser scanning system consisting of robot, portable laser scanner and
turntable. Optik 2011;122(4):324–9.

[14] Li P, Zhang W, Xiong X. A fast approach for calibrating 3D coordinate
measuring system rotation axis based on line-structure light. Microcomput
Appl 2015;34:73–5. Chinese.

[15] Wu Q, Li J, Su X, Hui B. An approach for calibration rotor position of three-
dimensional measurement system for line-structure light. Chin J Lasers
2008;35(8):1224–7. Chinese.

http://refhub.elsevier.com/S2095-8099(18)30429-6/h0005
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0005
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0005
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0010
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0010
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0015
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0015
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0020
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0020
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0020
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0025
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0025
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0025
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0030
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0030
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0030
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0035
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0035
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0035
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0040
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0040
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0045
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0045
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0050
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0050
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0050
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0055
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0055
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0055
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0060
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0060
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0065
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0065
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0065
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0070
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0070
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0070
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0075
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0075
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0075


S. Yang et al. / Engineering 4 (2018) 796–805 805
[16] Chang M, Tai WC. 360-deg profile noncontact measurement using a neural
network. Opt Eng 1995;34(12):3572–7.

[17] Dipanda A, Woo S, Marzani F, Bilbault JM. 3D shape reconstruction in an active
stereo vision system using genetic algorithms. Patt Recog 2003;36(9):2143–59.

[18] Zhao Y, Ren H, Xu K, Hu J. Method for calibrating intrinsic camera parameters
using orthogonal vanishing points. Opt Eng 2016;55(8):084106.

[19] Tsai RY. A versatile camera calibration technique for high-accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J
Robot Autom 1987;3(4):323–44.

[20] Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern
Anal Mach Intell 2000;22(11):1330–4.
[21] Li XW, Cho SJ, Kim ST. Combined use of BP neural network and computational
integral imaging reconstruction for optical multiple-image security. Opt
Commun 2014;315(6):147–58.

[22] Wei P, Cheng C, Liu T. A photonic transducer-based optical current sensor
using back-propagation neural network. IEEE Photonics Technol Lett 2016;28
(14):1513–6.

[23] Zhang Y, Liu W, Li X, Yang F, Gao P, Jia Z. Accuracy improvement in laser stripe
extraction for large-scale triangulation scanning measurement system. Opt
Eng 2015;54(10):105108.

[24] Watson DF. Computing the n-dimensional Delaunay tessellation with
applications to Voronoi polytopes. Comput J 1981;24(2):167–72.

http://refhub.elsevier.com/S2095-8099(18)30429-6/h0080
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0080
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0085
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0085
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0090
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0090
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0095
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0095
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0095
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0100
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0100
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0105
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0105
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0105
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0110
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0110
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0110
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0115
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0115
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0115
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0120
http://refhub.elsevier.com/S2095-8099(18)30429-6/h0120

	A Dual-Platform Laser Scanner for 3D Reconstruction of Dental Pieces
	1 Introduction
	2 Methodologies
	2.1 Laser scanning
	2.2 Calibration methods

	3 The dual-platform laser scanner
	4 Hybrid calibrations
	4.1 Integrative method
	4.2 Hybrid algorithm

	5 3D reconstruction
	5.1 Point-cloud reduction
	5.2 Delaunay triangulation

	6 Experiments and results
	6.1 Calibration
	6.1.1 Data collection
	6.1.2 Calibration results
	6.1.3 Discussion

	6.2 Measurement

	7 Conclusions
	ack20
	Acknowledgements
	Compliance with ethics guidelines
	References


