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In this research, an auxiliary illumination visual sensor system, an ultraviolet/visible (UVV) band visual
sensor system (with a wavelength less than 780 nm), a spectrometer, and a photodiode are employed
to capture insights into the high-power disc laser welding process. The features of the visible optical light
signal and the reflected laser light signal are extracted by decomposing the original signal captured by the
photodiode via the wavelet packet decomposition (WPD) method. The captured signals of the spectro-
meter mainly have a wavelength of 400–900 nm, and are divided into 25 sub-bands to extract the
spectrum features by statistical methods. The features of the plume and spatters are acquired by images
captured by the UVV visual sensor system, and the features of the keyhole are extracted from images
captured by the auxiliary illumination visual sensor system. Based on these real-time quantized features
of the welding process, a deep belief network (DBN) is established to monitor the welding status. A
genetic algorithm is applied to optimize the parameters of the proposed DBN model. The established
DBN model shows higher accuracy and robustness in monitoring welding status in comparison with a
traditional back-propagation neural network (BPNN) model. The effectiveness and generalization ability
of the proposed DBN are validated by three additional experiments with different welding parameters.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Laser welding—especially high-power laser welding—has been
widely applied in industries such as car manufacturing, aerospace
manufacturing, and shipbuilding [1–3]. Blowouts, humping, and
undercutting are typical defects that greatly reduce the strength
of the joint and limit welding efficiency. It is still a major challenge
to comprehensively depict the high-power disc laser welding pro-
cess, which is crucial in detecting welding defects and realizing
online monitoring of the welding status.

During laser welding, the material is rapidly heated up and
vaporized by the high density of the laser beam energy [4]. A key-
hole is formed in the molten pool beneath the laser beam due to
the recoil pressure induced by the vaporization, Marangoni force,
gravity of the liquid material, and buoyancy force [5]. The exis-
tence of the keyhole enhances the absorption of the laser energy
by the material due to the multi-reflection of the laser beam in
the keyhole [6]. Meanwhile, a metal plume induced by the
high-density-energy laser beam appears in and above the keyhole
[7]. The plume scatters and reflects the laser beam, and further
affects the dynamic of the keyhole [8]. Some spattering is gener-
ated as a result of the recoiling pressure induced by the drastic
vaporization [9,10]. The spatters disturb the dynamic of the molten
pool and keyhole, as they carry off some of the kinetic energy from
the molten pool. The above-mentioned research has revealed that
the keyhole, plume, and spatters are the most important phenom-
ena during the welding process, and that their real-time features
can be used to depict the welding status.

A great number of studies have applied visual sensing methods
to reveal the mechanism of laser welding [11–13], as visual sensors
provide high-dimensional insights into the spatters, keyhole, and
plume. Photodiode sensors and spectrometers have also been uti-
lized to monitor this industrial manufacturing process [14,15] due
to their low equipment cost and simple setup structure. Unfortu-
nately, in these studies, either only a single sensor was applied to
observe the welding process, or the captured signals were not
related to the welding status in a quantized way. Recently, many
machine learning methods, such as multiple linear regression
(MLR) [16,17], support vector machines (SVMs) [18], neural
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networks (NNs) [19,20], and so forth, have been employed in
modeling and pattern-recognition problems, such as statistical
parametric speech synthesis, speech emotion recognition, and
products manufacturing process monitoring [21,22]. However,
MLR has limitations in fitting the highly nonlinear features of the
welding process due to its linear property. The mapping ability of
SVM depends on its predefined kernel function, and may be insuf-
ficient for representing multiple-sensor signals from laser welding.
The NN method also has an intrinsic limitation, as it is easy to be
trapped in the local optimum, and difficult to find the global opti-
mal solution. Furthermore, these methods are shallowmodels with
one or no hidden layers, and cannot be utilized in exploring effec-
tive representation of highly correlatedmultiple-optical-sensor sig-
nals. Therefore, this research introduces a deep learning method
based on a deep belief network (DBN)model to solve this challenge.

This research aims to establish a multiple-optical-sensor sys-
tem to obtain comprehensive insights into the high-power disc
laser welding process. A deep learning model based on DBN is
established to find the global optimal results for monitoring the
welding status with the signals captured by the multiple-optical-
sensor system. The remainder of this research is organized as fol-
lows. The experimental setup is introduced in Section 2, and the
feature extractions of the multiple optical signals are described
in Section 3. Section 4 describes the architecture of the DBN model
and the preparation of the training and verification set, and pro-
vides a performance comparison between the established DBN
model and the traditional back-propagation neural network
(BPNN) model. In Section 5, the generalization ability and effec-
tiveness of the established DBN model are verified by three addi-
tional experiments with different welding parameters. Section 6
concludes this research.

2. Experimental setup

Fig. 1 depicts the experimental setup of this research. Four
optical-sensor systems, including an auxiliary illumination visual
sensor system, an ultraviolet/visible (UVV) band visual sensor
system, a spectrometer, and a photodiode are applied to capture
Fig. 1. Illustration of the
the signals of the welding process. The welding material in this
research is 304 stainless steel. The dimensions of the workpiece
are 150 mm in length, 10 mm in width, and 50 mm in thickness.

Optical signals from the welding area are acquired by the pho-
todiode sensor. A beam splitter is pre-equipped in the laser head,
and helps to collect and transmit these signals by means of an opti-
cal fiber, as shown in Fig. 1. The photodiode receives these signals
and divides them into the reflected laser light optical signal
(wavelength 1030 nm) and the visible light optical signal by means
of a dichroic mirror in the photodiode; both kinds of signal are
amplified and transmitted to the oscilloscope. The sampling
rates of the two kinds of signals are set as 500 kHz in order to
obtain the detailed optical features of the welding process in
high-temporal resolution.

A spectrometer is applied to collect the spectral signal (wave-
length from 186 to 1100 nm) from the welding area during laser
welding. As shown in Fig. 1, the spectral signals are captured by
a collimator and then transmitted to the spectrometer via the opti-
cal fiber. Previous research has shown that spectral signals with a
wavelength from 400 to 900 nm contain the most important
insights into the solid laser welding process. Therefore, the signals
within this wavelength range are selected to extract the features
for the online monitoring welding status. The sampling rate of
the spectrometer is set as 500 Hz.

Two high-speed visual imaging systems, including a UVV band
visual sensor system (wavelength greater than 390 nm) and an
auxiliary illumination visual sensor system, are applied to obtain
the features of the keyhole, plume, and spatter. The UVV band
visual sensor system consists of a UVV filter and a high-speed cam-
era. With the captured images, the visual features of the plume and
spatter can be extracted by means of a digital image processing
method. A 40 W auxiliary light source is employed to produce laser
light (wavelength 976 nm) to illuminate the welding area, and the
auxiliary illumination visual sensor system, coupled with a filter
that only permits laser light with a wavelength of 976 nm to pass
through, captures the visual features of the keyhole. The sampling
rates of the two visual imaging systems are both set as 5000
frame�s�1.
experimental setup.
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3. Feature extraction of multiple-sensor signals

3.1. Feature extraction from the auxiliary illumination visual sensor
system

Three images captured by the auxiliary illumination visual sen-
sor system are shown in Fig. 2. The keyhole features, including the
size and position of the keyhole, are calculated and quantized with
the crop and binarization operations in digital image processing.
Fig. 2 shows that the keyhole size and position fluctuate at differ-
ent moments. The feature vector XAI extracted from the signals of
the auxiliary illumination visual system is expressed in Eq. (1),
where keyholeposition denotes the keyhole position and keyholesize
denotes the keyhole size.

XAI ¼ keyholeposition; keyholesize
� � ð1Þ
3.2. Feature extraction from the UVV band visual sensor system

Fig. 3 shows two images acquired by the UVV band visual sen-
sor system. The features of the plume are extracted from the
images captured by the UVV band visual sensor system. The vol-
ume of the plume is calculated as the number of pixels occupied
by the plume, as shown in Fig. 3. The tilted degree of the plume
is defined as the angle between the centroid of the plume and
the vertical axis in the image coordinate system; this feature is
the indicator of the plume direction, which also can be considered
as the direction of the keyhole opening. The features of the spatters
are quantized according to their flying direction, and the numbers
of spatters flying forward and backward are calculated using digital
image process operations.

A total of four features are collected from the UVV band visual
sensor system; these features form the feature vector XUVV, which
is expressed in Eq. (2), where spatterfront denotes the number of
forward spatters, spatterback denotes the number of backward
Fig. 2. Three sequential images captured by the auxiliary illumination visual sensor
system through feature extraction. (a) Original image; (b) region of interest (ROI);
(c) binarization; (d) keyhole.

Fig. 3. Images captured by the UVV band visual sen
spatters, plumevolume denotes the volume of the plume, and
plumedegree denotes the tilted degree of the plume.

XUVV ¼ spatterfront; spatterback;plumevolume;plumedegree
� � ð2Þ
3.3. Feature extraction of two signals captured by the photodiode
sensor

The signals of the visible light and reflected laser light captured
via photodiode are analyzed by the wavelet packet decomposition
(WPD) method. WPD is achieved by applying both low-pass and
high-pass filters to calculate the approximation and their coeffi-
cients. The function of WPD (Snj;k tð Þ) can be described by Eq. (3),
where j is the scale coordinate, k denotes the location coordinate,
n is the modulation coordinate, t denotes the sequence number,
and Z is the set of the integers. Daubechies wavelets (db10) are
used as the wavelet function.

Snj;k tð Þ ¼ 2j=2Snð2jt � kÞ; j; k 2 Z ð3Þ

The first two decomposed signals (S00;0 and S10;0) in the first layer
of WPD can be expressed by Eq. (4).

S00;0 ¼ / tð Þ; S10;0 ¼ u tð Þ ð4Þ
The functions of the high-pass filter (h kð Þ) and low-pass filter

(g kð Þ) are defined by Eq. (5).

h kð Þ ¼ / tð Þ;/ 2t � kð Þh i; g kð Þ ¼ u tð Þ;u 2t � kð Þh i ð5Þ
In this way, the function of WPD for n > 1 can be described by

Eqs. (6) and (7).

S2nj;k tð Þ ¼
ffiffiffi
2

p X
k

h kð ÞSnj�1;k 2t � kð Þ ð6Þ

S2nþ1
j;k tð Þ ¼

ffiffiffi
2

p X
k

g kð ÞSnj�1;k 2t � kð Þ ð7Þ

With the photodiode signal xp, its WPD coefficients (Cn
j kð Þ) can

be expressed by Eq. (8).

Cn
j kð Þ ¼

X
t

xp tð ÞSnj;k tð Þ ð8Þ

The features Fj,n of the WPD coefficients Cn
j kð Þ related to both

the time and frequency are calculated in Eqs. (9)–(18), where K is
the number of the WPD coefficients, E denotes the mathematical
expectation function,x is the angular vector, and i is the imaginary
part.

F1
j;n ¼ 1

K

XK
k¼1

Cn
j kð Þ ð9Þ
sor system, and its feature extraction process.
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F2
j;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
k¼1

Cn
j kð Þ

h i2vuut ð10Þ

F3
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max Cn
j kð Þ

��� ���
F2
j;n

ð11Þ

F4
j;n ¼ 1

K

XK
k¼1
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XK
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F6
j;n ¼

E Cn
j kð Þ � F1
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h i3� �

F2
j;n

� 	3 ð14Þ

F7
j;n ¼ F2

j;n

F1
j;n

ð15Þ

F8
j;n ¼ 1

K

X
x

log Un
j xð Þ

��� ���e2pxi=K ð16Þ

F9
j;n ¼ 1

K

X
x

log Un
j xð Þ

��� ���e4pxi=K ð17Þ

F10
j;n ¼ F9

j;n � F8
j;n ð18Þ

In Eqs. (16) and (17), Un
j xð Þ is the Fourier transformation of the

WPD coefficients Cn
j kð Þ.

In this research, the visible light optical signal Svisible captured
by the photodiode is decomposed into 16 frequency sub-bands
according to the WPD method. The WPD coefficients Cn

j kð Þ of each
decomposed sub-band signal can be obtained, and its 10 statistic
features are calculated according to Eqs. (9)–(18). Considering all
the decomposed sub-band signals, the feature vector Xvisible-light

can be expressed by Eq. (19), where Fvisible denotes the feature
extracted from Svisible.

Xvisible-light ¼

F1
visible; j;1 F2

visible; j;1 . . . F10
visible; j;1

F1
visible; j;2 F2

visible; j;2 . . . F10
visible; j;2

..

. ..
. . .

. ..
.

F1
visible; j;n F2

visible; j;n . . . F10
visible; j;n

2
6666664

3
7777775

ð19Þ

The feature vector Xreflected-laser extracted from the reflected
laser light signal Srefleted is expressed by Eq. (20), where Frefleted
denotes the features extracted from Srefleted.

Xreflected-laser ¼

F1
reflected; j;1 F2

reflected; j;1 . . . F10
reflected; j;1

F1
reflected; j;2 F2

reflected; j;2 . . . F10
reflected; j;2

..

. ..
. . .

. ..
.

F1
reflected; j;n F2

reflected; j;n . . . F10
reflected; j;n

2
6666664

3
7777775

ð20Þ
Fig. 4. The structure of an RBM with f hidden and m visible neurons.
3.4. Feature extraction of the signal captured by the spectrometer

The selected spectral signals with a wavelength from 400 to
900 nm that have been captured by the spectrometer are divided
into 25 sub-bands, with each sub-band covering 20 nm. The mean
value of the intensity in each sub-band is calculated as the feature
of each sub-band, expressed by Eq. (21), where N denotes the num-
ber of the sub-band, nN,start denotes the start spectral number of the
Nth sub-band, nN,end denotes the terminal spectral number of the
Nth sub-band, xs denotes the spectral intensity, and spectrumN

denotes the calculated mean value of the intensity in the Nth
sub-band.

spectrumN ¼
PnN;end

j¼nN;start
xjs

20
; N ¼ 1;2; . . . ;25 ð21Þ

For each sample, a total of 25 features are obtained from 25 cor-
responding sub-bands. The feature vector extracted from the spec-
trometer can be expressed by Eq. (22).

Xspectrum ¼ spectrum1; spectrum2; . . . ; spectrum25½ � ð22Þ
4. Architecture and application of DBN

4.1. Framework of DBN

A DBN model consists of as many hidden layers as the target
problems require, with each hidden layer being composed of a
restricted Boltzmann machine (RBM). The DBN not only possesses
the advantages of conventional NNs, but also has a strong fusing
ability for multiple sensors due to its deep architecture [23–26].
The global optimal parameters of a DBN model are determined
through a two-step training algorithm—namely, pre-training and
fine-tuning. Recently, DBN models have been widely employed in
signal processing and in the machine learning industry, in areas
such as voice activity detection [27], acoustic modeling [28], and
face recognition [29].

A typical RBMmodel has two layers, as shown in Fig. 4; the bot-
tom layer is called the visible layer, and the top layer is called the
hidden layer. The RBM model can be considered as a special
Markov randommodel. All neurons {v1, v2,. . ., vm} in the visible lay-
ers are fully connected to units h {h1, h2,. . ., hf} in the hidden layer
by the bidirectional weightswpq, where p denotes the neuron num-
ber in hidden layer and q denotes the neuron number in the visible
layer.

The energy function of an RBM is expressed by Eq. (23), where
h = (w, b, c) denotes the parameters collection in RBM, wpq is the
bidirectional weight of the visible neurons vq and hidden neurons
hp, and bq and cp are the bias terms of the corresponding neurons
in the visible and hidden layers, respectively. The probabilities of
each neuron in the visible and hidden layers can be calculated
via Eqs. (24) and (25), respectively:

E v ;h; hð Þ ¼
Xf
p¼1

Xm
q¼1

wpqhpvq �
Xm
q¼1

bqvq �
Xf
p¼1

cphp ð23Þ
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P v; hð Þ ¼ 1
Z hð Þ

X
v

exp �E v ;h; hð Þ½ � ð24Þ

P h; hð Þ ¼ 1
Z hð Þ

X
h

exp �E v ;h; hð Þ½ � ð25Þ

In Eqs. (24) and (25), Z hð Þ denotes the normalization factor
expressed by Eq. (26).

Z hð Þ ¼
Xm
q¼1

Xf
p¼1

exp �E vq; hp; h

 �� � ð26Þ

Since an RBM prohibits any connections between neurons in the
same layer, the conditional probability distributions P h vjð Þ and
P v hjð Þ can be calculated as the products of the Bernoulli distribu-
tions expressed in Eqs. (27) and (28), where r uð Þ ¼ 1

1þe�u is the sig-
moid activation function and u denotes the input value of the
neuron. A contrastive divergence sampling algorithm is applied to
update the model parameters wpq, cp, and bq in Eqs. (27) and (28).

P hp ¼ 1 vj
 � ¼ r cp þ
X
q

wpqvq

 !
ð27Þ

P vq ¼ 1 hj
 � ¼ r bq þ
X
p

wpqhp

 !
ð28Þ

The output vector of the hidden units can be calculated accord-
ing to the forward propagation algorithm with the real input data
in the first visible layer; the output of the first hidden layer is then
considered to be the input data for the second hidden layer.

At the top layer of DBN, a classifier is employed for the purpose
of classification. In this research, a softmax classifier, which can
conduct Q multiple classification problems, is applied as the final
layer adhering to the DBN model, as expressed in Eq. (29), where
D denotes the probability value of the classification and d denotes
the category number in Q classification. The softmax classifier can
be considered to be made up of a number of logistic models.

Dd ¼ exqPQ
p¼1exp

ð29Þ

A DBN model can be constructed by stacking a few RBMs layer
by layer. In this research, a DBN model with three hidden layers is
established; its structure is shown in Fig. 5. The training process of
the DBN is conducted with the pre-training and fine-tuning steps.

(1) Pre-training step. The input data is directly transmitted to
the neurons in the visible layer, and then the output of RBM 1
Fig. 5. The structure of the DB
can be calculated. RBM 1 is trained with all the training samples
until the termination condition is fulfilled. Then the trained param-
eters of RBM 1 are fixed, and the hidden layer of RBM 1 is consid-
ered to be the visible layer to train RBM 2, according to the same
algorithm of RBM 1 shown in Fig. 5. The pre-training is unsuper-
vised and stops once all the successive individual RBMs have been
trained.

(2) Fine-tuning step. The parameters in each RBM are updated
and optimized by applying a back-propagation algorithm to reduce
the overall error of the training samples and enhance the classifica-
tion accuracy of the DBN model. All DBN layers are simultaneously
fine-tuned in this process. The overall training error is generated
by comparing the targets with the output of the DBN model. The
supervised fine-tuning process iterates until the terminal condition
of the DBN model is fulfilled.
4.2. Data preparation

In this research, the spectral insights into a sample acquired by
the spectrometer are divided into 25 sub-bands by wavelength.
The mean value of each spectral sub-band is calculated, and 25 fea-
tures are extracted in total. Both the visible light optical signal and
the reflected laser light optical signal captured by the photodiode
are decomposed into four levels by the WPD method; the fre-
quency bands of interest are consequently divided into 16 sub-
bands. As mentioned in Section 3.3, 10 different features are
extracted from each sub-band. Therefore, 320 features in total
are acquired from all sub-bands, considering the visible light opti-
cal signal and the reflected laser light optical signal. The volume
and tilted degree of the plume, and the number of forward and
backward spatters, are extracted from the images captured by
the UVV band visual sensor system, and the features of keyhole
size and position are acquired from the images from the auxiliary
illumination visual sensor system.

The calculated features of each set of 1000 from the original
sampling data from the photodiode are compressed to one piece
of sample data in order to synchronize with the samples from
the other sensors. For the auxiliary illumination visual sensor sys-
tem and the UVV band visual sensor system, the average value of
each set of 10 sequential samples is calculated as one piece of sam-
ple data. Therefore, the sampling rates of all the sensors in this
research are synchronized at 500 Hz, which is the highest sampling
rate of the spectrometer. Finally, a total of 351 features of the
welding process are acquired. The sample values of each feature
are normalized to 0–1 in order to ensure that each feature has
the same weight despite their different scales, and thus to improve
N applied in this research.
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the accuracy and robustness of the DBN model. The normalization
equation is expressed by Eq. (30), where xnorm is the normalized
feature value, x is the original feature value, xmin denotes the min-
imum feature value of all samples, and xmax denotes the maximum
feature value of all samples.

xnorm ¼ x� xmin

xmax � xmin
ð30Þ

In this research, 21 different experiments with different weld-
ing parameters were conducted and 10 500 samples of welding
process signals were collected. In this dataset, 7500 samples were
applied as the training data, and 3000 samples were used as the
testing data in the establishment of the DBN model.
4.3. Definition of weld statuses

The sound well weld status coupled with three typical defect
statuses—blowouts, humping, and undercutting—was defined
based on the international standard EN ISO 13919-1-1996 [30].
Thus, the weld status for all 10 500 samples in this research was
manually classified into four categories. Category 1 denotes the
sound well weld status, Category 2 denotes the blowout status,
Category 3 denotes the humping status, and Category 4 denotes
the undercutting status. Examples of each category are shown in
Fig. 6.
4.4. Model verification of DBN and comparison with the BPNN model

The 351 extracted features from one sample of the welding
process are gathered together and directly transmitted to the first
visible layer of the DBN. Three hidden layers are applied to
reduce the dimensions of the input features; finally, the optimal
representation of the original input features is acquired. The
number of neurons in the first, second, and third hidden layer is
200, 100, and 10, respectively. The softmax layer has four neurons
to calculate the four category classification results.

A genetic algorithm is particularly suitable to solve constrained
or unconstrained optimization problems. The genetic algorithm is
implemented by a natural selection process, which simulates the
biological evolutionary process in the real world [20]. The learning
rate, learning momentum, and size of the batch of the training data
model are optimized by a genetic algorithm, which is applied to
accelerate its training process and achieve the optimal parameters
for DBN in this research. The optimal values of the learning rate,
learning momentum, and size of the batch of the training set are
determined to be 0.05, 0.80, and 50, respectively.
Fig. 6. Definition of four kinds of welding status. (a) Sound

Table 1
Comparison of the BPNN and DBN models.

Modeling method Monitoring accuracy of category (%)

1 2 3

BPNN model 92.40 93.50 89.50
DBN model 99.40 98.80 98.30
A BPNN model with 351 nodes in the input layer, 200 nodes in
the hidden layer, and four nodes in the output layer is also
established for a comparison with the established DBN model.
The monitoring results of the welding status with the BPNN and
DBN models are tabulated in Table 1.

The established DBN model shows a higher average accuracy in
welding status monitoring than the BPNN model in this research.
Furthermore, the accuracy of each category is distributed more
evenly in the established DBN model than in the BPNN model, as
shown in Table 1. It is clear that the classification accuracy and
robustness of the proposed DBN model are better than those of
the BPNN model.
5. Results and discussion

Performance and generalization ability are important for deep
learning models. In this research, three different experiments with
different welding parameters are applied to validate the general-
ization ability and effectiveness of the established DBN model.
The main welding parameters of these three experiments are listed
in Table 2. The welds’ images, the captured original multiple-
sensor signals, and the online monitoring results corresponding
to the three experiments are shown in Figs. 7(a–c), respectively.
In Fig. 7(a), the welding process is divided into two parts; in the left
part, the welding process is stable, and a good appearance of the
weld is acquired; in the right part, blowouts occur, and a bad
appearance of the weld is observed. The variations of the visible
light photodiode signal, reflected laser light photodiode signal,
keyhole size, plume volume, and tilting degree of the plume are
highly related to the quality of the weld. In the left part, the visible
light signal, reflected laser light signal, keyhole size, and keyhole
position are stable, but the volume and tilting degree of the plume
show larger fluctuations.

In the right part, the above-mentioned signals present the
opposite variation; that is, the volume and tilting degree of the
plume become stable, while the visible light signal, reflected laser
light signal, keyhole size, and keyhole position show higher
fluctuation in comparison with the left part. Fig. 7(b) shows the
humping status that occurred in this experiment. The variations
in the visible light signal, keyhole size, plume volume, tilted
degree of the plume, and forward spatters are highly related to
the humping status. Similarly, the values of the spectrum
corresponding to the humping parts (colored in red in the figure
of the spectrum) are obviously larger than the other parts with a
sound well weld appearance. Fig. 7(c) shows the result of
Experiment 3. The left part of Experiment 3 shows an undercutting
status, and the right part shows a blowout status. In the undercut
well weld; (b) blowout; (c) humping; (d) undercutting.

Iterations Loss

4 Average

74.00 87.35 500 0.255
98.90 98.90 500 0.012



Table 2
The welding parameters of three different experiments.

Experiment No. Laser power (kW) Welding speed (m�s�1) Defocus (mm) Shielding gas (L�min�1)

1 6 3 0 30
2 11 3 �3 30
3 12 3 +1 30

Fig. 7. Online monitoring results and captured signals of three different welding experiments. (a) Experiment 1: sound well weld and blowout; (b) Experiment 2: sound well
weld and humping; (c) Experiment 3: undercutting and blowout. Group (i) is the weld appearance; group (ii) is the features extracted from multiple-sensor signals; and
group (iii) is the monitoring results. The categories of the vertical coordinates in the monitoring results are as follows: Category 1: sound well weld; Category 2: blowout;
Category 3: humping; and Category 4: undercutting.

Table 3
Online monitoring accuracy of three different welding experiments.

Experiment 1 (%) Experiment 2 (%) Experiment 3 (%) Average (%)

Category 1 (sound well weld) 94.40 99.30 — 96.85
Category 2 (blowout) 97.60 — 99.70 98.65
Category 3 (humping) — 98.40 — 98.40
Category 4 (undercutting) — — 93.80 93.80
Average 96.00 98.85 96.75 96.93
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period, only the signals of the backward spatters and spectrum
are stable; in the blowout part, the reflected laser light photodiode
signal and forward spatters signal become more stable, and
the other signals show higher fluctuations than those in the
undercut part. This analysis concludes that the relation between
the welding status and these sensed signals is complex and
nonlinear.
The online welding status monitoring results of the proposed
DBN model are listed in Table 3. The average accuracy of the three
experiments is 96.00%, 98.85%, and 96.75%, respectively. The aver-
age monitoring accuracy of Category 1, Category 2, Category 3, and
Category 4 is 96.85%, 98.65%, 98.40%, and 93.80%, respectively. This
result proves that the established DBN model has excellent gener-
alization and robustness ability.
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6. Conclusions

This research provides an innovative method for the online
monitoring of high-power laser welding status. A multi-optical-
sensor system is established, and these captured signals are pre-
processed to extract 351 dimensional features to depict the weld-
ing process. A DBN model is established to build the relationship
between the welding status and these captured features. A genetic
algorithm is applied to optimize the parameters of the DBN model.
The following conclusions can be reached.

(1) The established multi-optical-sensor is able to obtain
detailed and comprehensive insight into the high-power laser
welding process.

(2) The relation between the captured signal and the welding
status is complex and nonlinear.

(3) In comparison with a traditional BPNN model, the
established DBN model shows higher accuracy and robustness.

(4) Three different experiments with different welding
parameters validate the generalization ability and robustness of
the established DBN model.
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