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With the development of modern information technology—and particularly of the new generation of arti-
ficial intelligence (AI) technology—new opportunities are available for the development of the intelligent
machine tool (IMT). Based on the three classical paradigms of intelligent manufacturing as defined by the
Chinese Academy of Engineering, the concept, characteristics, and systemic structure of the IMT are pre-
sented in this paper. Three stages of machine tool evolution—from the manually operated machine tool
(MOMT) to the IMT—are discussed, including the numerical control machine tool (NCMT), the smart
machine tool (SMT), and the IMT. Furthermore, the four intelligent control principles of the IMT—namely,
autonomous sensing and connection, autonomous learning and modeling, autonomous optimization and
decision-making, and autonomous control and execution—are presented in detail. This paper then points
out that the essential characteristic of the IMT is to acquire and accumulate knowledge through learning,
and presents original key enabling technologies, including the instruction-domain-based analytical
approach, theoretical and big-data-based hybrid modeling technology, and the double-code control
method. Based on this research, an intelligent numerical control (INC) system and industrial prototypes
of IMTs are developed. Three intelligent practices are conducted, demonstrating that the integration of
the new generation of AI technology with advanced manufacturing technology is a feasible and conve-
nient way to advance machine tools toward the IMT.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Intelligent manufacturing is one of the most important
elements of the new industrial revolution, which is the digital,
networking, and intelligent development of the manufacturing
industry. As the main focus of the Industrial Internet in the United
States, Industry 4.0 in Germany, and China’s corresponding manu-
facturing initiative, intelligent manufacturing deeply integrates
advanced information technology—and especially the new genera-
tion of artificial intelligence (AI)—with manufacturing technology,
in order to promote the new industrial revolution [1].

The machine tool is the foundation of the manufacturing
industry, and its level of intellectualization has a critical influence
on the implementation of intelligent manufacturing. Accelerating
the development of the machine tool toward intelligence is not
only an urgent demand for the transformation and upgrading of
the machine tool industry, but also a vital element in and a foun-
dation for building a powerful manufacturing country [2].

At the end of 2017, the Chinese Academy of Engineering (CAE)
proposed three classical paradigms for intelligent manufacturing
[1]: digital manufacturing, digital-networked manufacturing, and
new-generation intelligent manufacturing. These paradigms indi-
cate the direction of the development of intelligent manufacturing.

Based on these three paradigms and on the historical develop-
ment of the machine tool, the evolution of the machine tool from
the traditional manually operated machine tool (MOMT) to the
intelligent machine tool (IMT) can be divided into three stages:
the numerical control machine tool (NCMT), the smart machine
tool (SMT), and the IMT.

The first stage in the evolution of the machine tool is the NCMT,
in which a numerical controller (NC) system is inserted between
the human user and the machine tool. The manual labor work of
the human is transferred to the controller in this stage.

The second stage is the SMT, in which network and other infor-
mation technologies are integrated with the NCMT; this enables
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the machine tool to sense information from the machining envi-
ronment and connect with difference devices. Part of the sensing
activities and the knowledge-giving brainwork of the human are
transferred to the machine tool in this stage.

The third stage is the IMT, in which the new generation of AI
technology is integrated with the machine tool; this empowers
the machine tool with the ability to learn, generate, and accumu-
late knowledge. Part of the knowledge-learning brainwork of the
human is transferred to the IMT in this stage.

The structure of this paper is based on this analysis of the devel-
opment of the machine tool, and proceeds as follows: Section 2
introduces the evolution of the machine tool up to the IMT. Sec-
tion 3 presents the control principle (with some essential enabling
technologies), basic features, and major functions of the IMT. Sec-
tion 4 elaborates the industrial practice of the intelligent numerical
controller (INC), industrial prototypes of the IMT, and its three
intelligent applications. Finally, Section 5 concludes the paper.
2. Evolution of the machine tool to the IMT

As the beginning of machine tool, the MOMT can be regarded as
an integration of a human user with the physical system of a
machine tool. Using his or her sensing and decision-making ability,
a human manipulates the MOMT to execute the machining. In the
process of machining using a MOMT, the tasks of sensing and ana-
lyzing information, decision-making, and controlling the machine
tool are totally completed by the human. The MOMT is a typical
human–physical system (HPS) [1]. A schematic of the control prin-
ciple of the MOMT is shown in Fig. 1.

The evolution of machine tool from the MOMT to the IMT is
divided into three stages: from the MOMT to the NCMT, then to
the SMT, and finally to the IMT.
2.1. The numerical control machine tool

With the development of numerical control technology, the
machine tool was developed into the NCMT. An NC is inserted
between the human side and the machine tool side, and machining
information is sent to the NC via G-code. In this way, the human’s
manual labor work (i.e., operation work) is taken by the NC to con-
trol the motion of the machine tool.

The NCMT is a human–cyber–physical system (HCPS) [1], in
which a cyber system (i.e., the NC) is inserted and connects the
Fig. 1. (a) Control principle of the MOMT; (b) traditio
human side with the physical side. A schematic of the control prin-
ciple of the NCMT is shown in Fig. 2.

Compared with the MOMT, the essential characteristic of the
NCMT is the addition of the NC (i.e., the cyber system) between
the human side and the physical body of the machine tool. The
NC plays an important role in the process of machining; it takes
over the majority of the human’s labor work to control the
machine tool for completing machining tasks.

As the NCMT can only control the moving trajectory of the cut-
ter and workpiece via the G-code, it lacks the ability to sense,
obtain feedback, learn, or model the actual working status of the
machine tool (e.g., the cutting force, inertia force, friction force,
vibration, thermal deformation, environmental change, etc.). This
may lead to a deviation of the actual path from the theoretical
one, which will affect the surface processing quality and produc-
tion efficiency. Therefore, the NCMT lacks intellectualization.
2.2. The smart machine tool

With the development of ‘‘Internet+” technology in the past
decade [3,4], the technologies of the internet, the Internet of Things
(IoT), and intelligent sensing have been applied to the remote ser-
vicing, condition monitoring, fault diagnosis, maintenance, and
management of the machine tool. Research and practice in the
application of these technologies to machine tools have been con-
ducted [5,6], especially by commercial corporations such as Mazak,
Okuma, DMG MORI, FANUC, and the Shenyang Machine Tool Cor-
poration. These companies have launched their own SMTs [7].

The essential characteristic of the SMT can be described as
‘‘internet + sensor”; thus, the SMT addresses the problem of the
NCMT lacking the ability to adequately sense or connect.

Unlike the NCMT, the SMT incorporates sensors and utilizes
them to sense the machining condition. In the SMT, the Industrial
Internet is used to interconnect equipment so as to collect and
aggregate the data of the machining process. The collected data
is analyzed and processed to enable real-time or non-real-time
feedback control of the machine tool. A schematic of the control
principle of the SMT is shown in Fig. 3.

The SMT has a certain level of intellectualization, which is
described below.

(1) The networked technology continuously merges with the
machine tool. In 2006, the Association for Manufacturing Technol-
ogy (AMT) in the United States proposed the MTConnect protocol
for the interconnection of machine tools [8,9]. Based on the
nal manufacturing system of the MOMT-HPS [1].



Fig. 2. (a) Control principle of the NCMT; (b) digital manufacturing system of the NCMT-HCPS [1]. CAD: computer-aided design; CAM: computer-aided manufacturing; CNC:
computer numerical control; PID: proportional–integral–derivative.
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communication specification OPC Unified Architecture (OPC-UA),
the German Machine Tool Builders’ Association (i.e., the VDW)
developed a German version of the communication protocol
named umati for the interconnection of machine tools in 2018
[10]. The Wuhan Huazhong Numerical Control Co., Ltd. (HNC)
and some Chinese NC enterprises came together to propose the
NC-LINK protocol, which can realize the transmission of process
parameters, equipment status, operational process, cross-media
information, and other forms of information flow in the manufac-
turing process.

(2) Manufacturing systems are developing into platforms.
Several giant manufacturing data-processing platforms have been
recently developed by foreign commercial companies. General
Electric (GE) launched a platform named Predix [11], which is a
manufacturing-oriented platform for the Industrial Internet.
Siemens released an open industrial cloud platform named
MindSphere [12]. HNC developed a cloud service platform for NC,
which provides a standardized development module for the
secondary development of NC. These platforms mainly focus on
the Industrial Internet, big data, and cloud computing. Nevertheless,
as intelligent technology continues to develop, these platforms
show good potential for application to machine tools.

(3) The technology of intellectualization is in stage of germi-
nation. Early in 2006, the Japanese corporation Mazak presented
an SMT with four intelligent functions: active vibration control,
an intelligent thermal shield, an intelligent safety shield, and a
voice adviser. DMG MORI has launched a CELOS system with an
open environment for the extension of intelligent applications.



Fig. 3. (a) Control principle of the SMT; (b) digital-networked manufacturing system of the SMT-HCPS [1].
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FANUC has developed intelligent technologies such as intelligent
adaptive control, an intelligent loading table, intelligent spindle
acceleration and deceleration, and intelligent thermal control.
The TNC 640 of Heidenhain Corporation has the intelligent func-
tions of high-speed contour milling, dynamic monitoring, and high
dynamic precision. The HNC-8 of HNC has several intelligent func-
tions such as process parameter optimization, error compensation,
tool-breaking monitoring, and machine tool health assurance.

Although the SMT has been developed for more than a decade,
and preliminary achievements have been made in both research
and industrial practice, these machine tools only possess simple
abilities of sensing, analysis, feedback, and control; they are far
from being capable of replacing a human’s brainwork. Due to its
excessive reliance on human experts for theoretical modeling
and data analysis, the SMT lacks real intelligence. Furthermore,
its accumulation of knowledge is difficult and slow, and its adapt-
ability and effectiveness are insufficient. The fundamental reason
behind these disadvantages is that the SMT has not yet made a
substantial breakthrough into autonomous learning and generat-
ing knowledge.
2.3. The intelligent machine tool

In the 21st century, rapid progress has been made in the
development of the new generation of information technologies,
including the mobile internet, big data, cloud computing, and IoT,
and a great leap forward has been made in combining these
technologies. These technological advancements are concentrated
on the strategic breakthrough of the new generation of AI technology,
the essential feature of which is the capacity to generate,
accumulate, and utilize knowledge.

The new generation of intelligent manufacturing, which is
motivated by deep integration of new-generation AI technology
with advanced manufacturing technology, is becoming the core
driving force for the new industrial revolution. The new generation
of AI technology also offers a great opportunity for the evolution of
the machine tool into the IMT with real intellectualization.

Based on the new generation of information technology, the
IMT is a machine tool that is deeply integrated with the new-
generation AI technology and advanced manufacturing technology.
The IMT retrieves information on its machining, working
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conditions, and environment via autonomous sensing and connec-
tion; generates knowledge from autonomous learning and model-
ing; conducts autonomous optimization and decision-making from
the generated knowledge; and completes autonomous control and
execution (Fig. 4). In this way, the IMT fulfills the multiple objec-
tives of superior precision, good reliability, high efficiency, good
safety, and low consumption in the manufacturing process.

With the enabling technology of the new generation of AI, the
IMT has good capacities for learning, accumulating, and utilizing
knowledge. As a result, the relationship between humans and
machine tools has fundamentally changed, from humans
metaphorically ‘‘giving fish” to machine tools in the stage of the
traditional machine tool, to humans teaching machine tools
‘‘how to fish” in the stage of the IMT [1].
3. The new-generation AI-based IMT

3.1. The control principle of the IMT

According to the definition of the IMT given in Section 2.3, this
paper presents the principles for implementing the IMT’s autono-
mous sensing and connection, autonomous learning and modeling,
autonomous optimization and decision-making, and autonomous
control and execution (Fig. 5).
3.1.1. Autonomous sensing and connection
The NC of the IMT is composed of an NC device, a servo drive, a

servo motor, and so forth, and is the core control unit for the
automation of the machining task. During the operation of the
machine tool, a large amount of real-time in-process electronic
data will be produced from the control command and feedback sig-
nal, which is a quantitative and precise description of the working
task (or working condition) and running status of the machine tool.
Therefore, the NC is not only an executor in the physical space, but
also—and more importantly—a perceptron in the cyberspace.

The internal in-process electronic data in the NC is the main
data source for sensing, and includes the following types of data
(Fig. 5): the real-time interpolation data of the G-code (e.g., the
interpolation position, tracking error, feed speed, etc.) and the
internal electronic data from the servo and motor (e.g., spindle
power and current, feeding axes current, etc.). By automatically
aggregating the internal in-process electronic data, external data
collected from the sensors (e.g., temperature, vibration, and vision
sensors) and the process parameters (e.g., cutting width, cutting
Fig. 4. Definition
depth, material removal rate (MRR), etc.) calculated from the
G-code, autonomous sensing and connection is realized.

The autonomous sensing of the IMT is achieved by building a
correlation between the response and the working task of the
machine tool. This is based on the technologies of an instruction-
domain oscilloscope and an instruction-domain-based analyzing
approach, as proposed in our previous research [3]. By collecting
machining big data via the instruction-domain-based approach
and aggregating it from the interconnection of machine tools via
NC-LINK, the big data for the machine tool’s full life-cycle is
established.

3.1.2. Autonomous learning and modeling
The main purpose of autonomous learning and modeling is to

generate knowledge via learning. In NC machining, this knowledge
is the model of the input and the response of the machine tool. The
model and its parameters are the embodiment of this knowledge—
that is, knowledge generation defines the model and calibrates its
parameters. Based on the data obtained from autonomous sensing
and connection, a new-generation AI algorithm library embedded
in a big data platform is utilized to learn and generate knowledge.

In autonomous learning and modeling, there are three methods
for generating knowledge: theoretical modeling based on the phys-
ical principle; big data modeling based on the relationship
between the working task and the operational state of the machine
tool; and hybrid modeling based on big data and theoretical
analysis.

In the process of autonomous learning and modeling, we built
several models, including a spatial structure model, kinematic
model, geometric error model, thermal error model, virtual numer-
ical controller (VNC) model, process system model, and dynamic
model. These models can be shared among the same type of
machine tool; together, they form the digital twin (on the model
level) of the machine tool, as shown in Fig. 5.

3.1.3. Autonomous optimization and decision-making
The premise of decision-making is accurate prediction. During a

new machining task, the response of the machine tool can be pre-
dicted from the model generated in the previous step. According to
the prediction, a multi-objective iterative optimization, such as
quality enhancement, process parameter optimization, health
assurance, or production management, can be carried out in the
decision-making for optimal machining, through which a control
code called the intelligent code (i-code), which is embedded with
the results of the optimal decision, is generated for machining
of the IMT.



Fig. 5. Control principle of the IMT. VNC: virtual numerical controller.
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optimization, as shown in Fig. 5. Autonomous optimization and
decision-making are the process of predicting the response of the
machine tool, making decisions, and eventually generating the cor-
responding i-code.

The i-code is a crucial element in fulfilling autonomous opti-
mization and decision-making for the IMT. Unlike the traditional
G-code, the i-code is an intelligent control code that is designed
and generated for multi-objective optimization and that corre-
sponds to the instruction domain. It is an accurate reflection of
the results of the multi-objective optimization and the control
strategy of machine tool (e.g., motion planning, dynamic accuracy,
machining process, management of cutter, etc.), and evolves with
changes in the working condition of the manufacturing resource.
For a detailed explanation and theory of the i-code, interested
readers can refer to the patent of Ref. [13].

3.1.4. Autonomous control and execution
The autonomous control and execution of a machine tool is

realized by means of the double-code control technology—that is,
synchronous control through a combination of the traditional
geometry-based G-code (the first code) and the optimal decision-
embedded i-code (the second code), in order to fulfill the objec-
tives of superior precision, good reliability, high efficiency, good
safety, and low consumption.

3.2. Features of the IMT

Compared with the NCMT and SMT, the IMT has drastic differ-
ences in terms of hardware, software, interactive method, control
instruction, acquisition knowledge, and so forth. A comparison of
these three types of machine tools is provided in Table 1.

3.3. Major intelligent functions of the IMT

The functions of different IMTs vary significantly. However,
IMTs share the same goals—that is, superior precision, good relia-
bility, high efficiency, good safety, and low consumption. These
goals are achieved through the development of the intelligent
functions (also called applications or Apps) of the IMT, and can
be classified into four categories: quality enhancement, process
parameter optimization, health assurance, and production
management.

(1) Quality enhancement: Improve the surface machining
precision and quality. Improvement of the machining accuracy is
the primary driving force for the IMT. Regarding this goal, the IMT
should have Apps related to processing quality assurance and
enhancement, such as spatial error compensation, thermal error
compensation, dynamic error compensation, contour error compen-
sation, high-precision surface machining based on double-code
control technology, parameter optimization of the NC system based
on the priority of precision or surface smoothness, and so forth.

(2) Process parameter optimization: Improve the machining
efficiency. Process parameter optimization involves adaptively
controlling and adjusting the machining parameters (e.g., feed rate
and spindle speed) based on the machine’s physical properties and
on the characteristics of the cutting dynamic, in order to achieve
specific objectives such as placing as its first priority for machining
quality, machining efficiency, or machine tool protection. Typical
Apps for process parameter optimization may include but are not
limited to: autonomous learning and growth of the machining
database, process system response modeling, intelligent process
response prediction, cutting loading-based process parameter
evaluation and optimization, and automatic detection and adaptive
control of machining vibration.

(3) Health assurance: Ensure that the equipment is in good
condition and is safe. The health assurance of the machine tool
mainly addresses the issues of life prediction and health manage-
ment of the machine tool, with the goal of ensuring efficient and
reliable operation of the machine tool. The IMT has health state
indication Apps both for the machine tool as a whole and for its
working components. It also has a toolbox for the development
of health assurance Apps. To be specific, the health assurance Apps
include but are not limited to: intelligent maintenance of the
spindle and feeding axes, health condition detection and predictive



Table 1
Comparison of the NCMT, SMT, and IMT.

NCMT SMT IMT

Hardware CPU CPU CPU + GPU or NPU (the AI chip)
Software App software App software + cloud + App

development environment
App software + cloud + App development environment + new-
generation AI

Development platform NC secondary
development platform

NC secondary development platform
+ big data aggregation platform

NC secondary development platform + big data aggregation and
analysis platform + new-generation AI algorithm platform

Information sharing Independent
information of machine
tool

Machine tool + network + cloud
+ mobile

Machine tool + network + cloud + mobile

Data interface Internal bus Internal bus + external interconnection
protocol + mobile internet

Internal bus + external interconnection protocol + mobile internet
+ digital twin

Data Data Big data Big data
Function of machine tool Fixed function Fixed function + some basic extension

Apps
Fixed function + intelligent Apps extended flexibly

Interactive method Local Local, cyber, and mobile Local, cyber, and mobile
Analytical method Time-domain signal analysis

+ template of data
Instruction-domain-based big data analysis + new-generation AI
algorithm

Control instruction G-code G-code G-code + i-code
Knowledge of acquisition Knowledge given by

human
Knowledge given by human Autonomous generated knowledge, knowledge aggregated and

shared
via interactions of human–machine and machine–machine

App: application; CPU: central processing unit; GPU: graphics processing unit; NPU: neural-network processing unit.

J. Chen et al. / Engineering 5 (2019) 679–690 685
maintenance of the machine tool, statistical evaluation and predic-
tion of the machine tool’s reliability, autonomous learning, and
sharing of maintenance knowledge among IMTs.

(4) Production management: Improve the efficiency of the
management and operation. The main objective for production
management is to optimize the machining process and ensure
low consumption of time and resources for the entire manufactur-
ing process. Intelligent Apps for production management are
mainly divided into three categories—namely, machine condition
monitoring, intelligent production management, and intelligent
machine operation. Their specific functions are: intelligent recog-
nition of the machining state (e.g., cutter breaking, chip winding);
intelligent detection of tool wear and damage; tool life intelligent
management; intelligent identification (ID); condition manage-
ment of the cutting tool, fixture, and workpiece; and intelligent
and low-carbon control of the auxiliary device.
4. Engineering practices of the INC and the IMT

According to the three-tuple model of HCPS that is proposed in
Ref. [14], the machine tool is the ‘‘subject,” the NC is the ‘‘comman-
der,” and the human is the ‘‘dominator” in NC machining practice.
From the MOMT to the NCMT, and eventually to the IMT, the most
significant change lies in the continuous increased functions of the
NC. The degree of intellectualization of the machine tool is deter-
mined by the level of intellectualization of the NC. Before building
an IMT, a corresponding INC is necessary.
4.1. The intelligent numerical controller

In this research, an INC (the HNC-9) was developed; its archi-
tecture is schematically shown in Fig. 6. The Local NC, which is
the physical entity of the INC, is composed of the NC device, servo
drive, motor, and other auxiliary devices, and is used to complete
the real-time control of the IMT.

In addition to all the functions of a traditional NC, the INC must
have the basic sensing ability for its intellectualization, which is to
collect and transfer the internal electronic data (e.g., the instruc-
tion data and response data) as well as some external data from
the sensors (e.g., temperature, video, and vibration) of the
controlling process in real time.
By using the NCUC2.0 field bus, the INC retrieves data from
multiple sources, such as the servo drive, intelligent module, and
external sensors. By utilizing the NC-LINK interconnection proto-
col, machine tools, industrial robots, automated guided vehicles
(AGVs), and intelligent modules are connected, while the big data
is aggregated and stored on the big data platform called the INC-
Cloud. The INC-Cloud can provide several useful tools for data
management and knowledge generation, such as algorithm and
match libraries, databases, and deep leaning platforms.

The main characteristics of the INC are a response-level digital
twin and the corresponding intelligent functions (i.e., Apps). In
the INC, the Cyber MT and the Cyber NC are built; these are respec-
tively the digital twins of the physical machine tool and of the
Local (physical) NC. The digital twins can simulate the working
principle and responding rule of the machine tool and the NC in
cyberspace. As the integration of the physical space (i.e., Local
NC) with the cyberspace (i.e., Cyber MT and Cyber NC), the INC is
the foundation for the intelligence of the IMT.

4.2. Industrial prototypes of the IMT

Based on the proposed INC, we developed three industrial pro-
totypes of the IMT—namely, the S5H precision machine tool, the
BL5-C intelligent lathe machine, and the BM8-H intelligent milling
machine (Fig. 7). These three IMTs were utilized to verify the three
intelligent enabling technologies proposed in this paper.

The S5H precision machine tool was constructed by taking a
precision machine tool as the main body. It has the following char-
acteristics: It is composed of a marble bed with each feeding axis
equipped with a high-precision grating ruler and driven by a linear
motor; three independent control systems are used to separately
control the temperature of the spindle, bed, and coolant; 18 tem-
perature sensors are embedded in the body of the machine tool;
and three vibration sensors are installed at the front-end bearings
of the spindle and the working table. The positioning accuracy of
the machine tool is � 1 lm, while the repeated positioning accu-
racy is � 0.5 lm. This machine tool is utilized to verify Intelligent
Function 1: Surface machining quality optimization based on Cyber
NC and double-code control technology, which will be presented in
Section 4.3.

The BL5-C intelligent lathe machine was constructed by taking a
slant bed lathe machine as its main body. It has the following



Fig. 6. System architecture of the INC. AGV: automated guided vehicle.

Fig. 7. Industrial prototypes of IMTs based on the INC. (a) The S5H precision machine tool; (b) the BL5-C intelligent lathe machine; (c) the BM8-H intelligent milling machine.

686 J. Chen et al. / Engineering 5 (2019) 679–690
characteristics: Temperature sensors are installed to detect the
temperature of the machine tools at different locations, such as
at the X and Z feeding axes (at the bearing seat and nut seat), spin-
dle (at the bearing seat), body of the machine tool, and so on;
vibration sensors are installed on the spindle box to detect the
vibration frequency; grating rulers are installed on the X and Z
feeding axes as position inspection devices of their closed-loop
control. The positioning accuracy of the machine tool is � 6 lm,
the repeated positioning accuracy is � 3 lm, and the roundness
of the turning parts is � 2 lm. This machine tool is utilized to
verify Intelligent Function 2: Machining parameters optimization of
lathing based on big data modeling, which will be presented in
Section 4.3.

The BM8-H intelligentmillingmachine has in total nine temper-
ature sensors embedded at the ball screw, bearing seat, and motor
seat of three feed axes, and four temperature sensors on the spindle
box. These sensors are used to monitor the temperature in order to
model the thermal deformation of the machine tool. A three-
directional vibration sensor is installed on the spindle and working
table, and a high-precision grating ruler is installed on each feeding
axis for closed-loop control. Thepositioning accuracyof themachine
is � 10 lm and the repeated positioning accuracy is � 8 lm. This
machine tool is used to verify Intelligent Function3:Hybridmodeling
of themachine tool’s feeding system and its application to contour error
compensation, which will be presented in Section 4.3.

4.3. Examples of intelligent applications of the IMT

4.3.1. Surface machining quality optimization based on Cyber NC and
double-code control technology

This example was implemented on the S5H precision machine
tool, where the test specimen Mercedes was taken as the
machining part (Fig. 8) in order to verify the effectiveness of Cyber
NC and double-code control technology in improving the surface
machining quality.

Based on the geometric and structural parameters of the
machine tool, Cyber NC, the parameter-level digital twin of the
NC, is built, where the Local NC and Cyber NC are equivalent at
the interpolation level—that is, they have the identical interpola-
tion command for the machining program.



Fig. 8. Test specimen Mercedes.
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Before the actual machining, the G-code of the surface is simu-
lated in Cyber NC. By taking the smoothness of the interpolation
command and the consistency of the feed rate along the lateral
direction of the tool path as the objectives, the interpolation com-
mand and feed rate planning command are iteratively adjusted and
optimized until the optimization objectives are achieved. Based on
the optimized results, the i-code is generated. In the real machin-
ing scenario, double-code control technology is implemented,
where the G-code and i-code (embedded with the optimized result
of the feed rate) are executed synchronously in the INC.

The experimental results shown in Fig. 9 verify that optimiza-
tion based on a digital twin and double-code control technology
can significantly improve the consistency of the feed rate along
the lateral direction, thereby improving the surface machining
quality. It is observed that the features of the part after optimiza-
tion are clearer and more consistent with those of the original
computer-aided design (CAD) model (Fig. 9(b)).

4.3.2. Machining parameters optimization of lathing based on big data
modeling

Optimization of the process parameters in computer numerical
control (CNC) machining is essential, as it affects the machining
quality, efficiency, and life of manufacturing resources such as
Fig. 9. Comparison of Region A before and after optimization. (a) The chromato-
graphic point cloud of interpolation (CPCI) of the feed rate [15]; (b) the surface
machining quality.
machine tools and cutters [16,17]. There is an extensive body of
work on process parameters optimization. One method is to opti-
mize the process parameters by theoretically modeling the cutting
force and cutting stability during machining [18]. Other methods
based on big data modeling have emerged in recent years [19,20].

This example was implemented in the BL5-C intelligent lathe
machine. The in-process machining data was utilized to build the
processing system response model of this machine. This example
was conducted to verify the feasibility and effectiveness of
knowledge learning, accumulation, and utilization based on
manufacturing big data. Details for this example are given as follows.

(1) A back propagation (BP) neural network was chosen as the
model for describing the law of the process system response of
the lathe machine. The input of this model contains five process
parameters—including the cutting depth, turning radius, cutting
speed, feed rate, and MRR—while the output is the spindle power.
The structure and input/output of this model are shown in Fig. 10.

(2) A general part is machined using this machine tool, and the
big data of the instruction domain is collected. The steady-state
data is extracted from the data of the spindle power and is taken
as the sample for training the neural network. Based on the tech-
nology of the instruction domain, the corresponding cutting
parameters for the steady state of the spindle power are retrieved
as the samples for the input of the model; these include the cutting
depth, turning radius, cutting speed, feed rate, and MRR. As the
machining goes on, the number of samples at the steady state
increases, and the neural network model can be trained with an
increasingly better prediction accuracy; in other words, a digital
twin model (the BP network) is gradually developed in the machin-
ing process, and can be used to simulate and predict the spindle
power of the lathe machining.

(3) Given a new part (with different geometric shapes and pro-
cess parameters) machined using the same manufacturing
resources (i.e., machine tool, cutter, materials of the workpiece,
and cooling conditions), the spindle power is predicted from the
model generated as described above before the actual machining
is performed; based on this, the feed rate can be iteratively opti-
mized. For the parts shown in Table 2, by taking the maximum
allowable spindle power and its fluctuation as the constraints,
optimization is conducted toward machining efficiency; the opti-
mization results are shown in Table 2 and Fig. 11. The experimen-
tal results show that the machining time after optimization is
27.8% shorter, while both constraints for spindle power are
satisfied.
4.3.3. Hybrid modeling of the machine tool’s feeding system and its
application to contour error compensation

Accurate modeling of the feeding system of the machine tool is
the basis for control strategy optimization, parameter optimiza-
tion, error pre-compensation, and contouring accuracy improve-
ment [21,22]. Based on a theoretical analysis of the feeding
system, Erkorkmaz and Altintas [23] proposed an unbiased least-
squares approach to estimate inertia and viscous friction, and
Fig. 10. The BP neural network for modeling the process system response.



Table 2
Comparison of experimental results.

Testing part Machining time (s) Efficiency improvement (%)

Before opt After opt

187 135 27.8

Opt: optimization.

Fig. 11. Experimental results before and after optimization. (a) Feed rate;
(b) spindle power.

Table 3
Parameters and their identification results.

Parameter Definition Sen

Tf Friction torque of screw nut pair w

BL Damping coefficient ww

JC Rotational inertia of coupling w

FC Coulomb friction of working table ww

f S Stribeck friction of working table ww

b Attenuation index of Stribeck friction for the working table ww

Fig. 12. (a) Circular contour of different conditions; (b) comparison of contou
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developed the friction model by observing the disturbance torque
through a Kalman filter. This model was utilized to design a
high-speed feed drive control system. In contrast to the theoretical
modeling method, other work has focused on the data-driven
modeling approach. Huo and Poo [24] presented a nonlinear
autoregressive (NA) neural network modeling method to construct
a model of the feeding system, from which the actual position of
the machine tool can be precisely predicted from some given input.
Li et al. [25] proposed a data-driven method for backlash error pre-
diction using a deep belief network (DBN).

This example was implemented on the BM8-H intelligent
milling machine. The model of the machine tool’s feed system
was built via the hybrid modeling approach using multi-domain
theoretical analysis and big-data-based modeling, and the feasibil-
ity of this hybrid modeling approach is demonstrated. Details for
the implementation are given as follows.

(1) A multi-domain theoretical model was built for the X and Y
feeding axes of the BM8-H intelligent milling machine; it includes
the elements of the servo drive, servo motor, working table, and
mechanical transmission components. In the theoretical analysis,
the models for the servo drive and servo motor were built based
on their design parameters. The parameters for modeling the
mechanical components are listed in Table 3. In order to accurately
identify these parameters, the sensitivity analysis approach is used
to determine their identification order. A default value is assigned
to parameters with low sensitivity, and the parameters are then
identified in descending order of sensitivity. For the parameters
of the mechanical components, the identification results are shown
in Table 3.

The prediction accuracy of this model is verified by the
circular trajectory with a radius of 50 mm and a feed rate of
3000 mm�min�1; the maximum contour error is 10.07 lm, as
shown in Fig. 12.
sitivity Identification interval Default value Identification result

[0.1, 0.3] 0.15 0.197
w [0.01, 0.03] 0.015 0.02

[5 � 10�5, 1 � 10�4] 8 � 10�5 7.8 � 10�5

w [250, 450] 350 398
[220, 400] 250 398
[0, 8] 5 2

r prediction error between multi-domain modeling and hybrid modeling.
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(2) To improve the prediction accuracy, a hybrid model was
designed, as shown in Fig. 13. The model consists of a basic model
and a deviation model, which are respectively the multi-domain
theoretical model obtained in the above step and a six-layer neural
network model. The input of the neural network is the instruction
sequence of the feed system and the perdition sequence from the
multi-domain model; the output is the deviation prediction
sequence between the simulation value and the real measured
value. Based on the samples taken from the instruction value and
the real measured value, the neural network characterizing the pre-
diction error of the theoretical model is trained to estimate the
error in the actual machining process. By combining the prediction
sequence from the theoretical model with the deviation prediction
sequence from the neural network, the mixed prediction sequence
can be made to accurately simulate the response of the feeding sys-
tem of the machine tool. In Fig. 13, the basic model is consisted of
automatic position regulator (APR), automatic speed regulator
(ASR), automatic current regulator (ACR), motor, and the mechani-
cal transmission component; r is the instruction sequence, w is the
real measured value, and F0 is the input of disturbance.
Fig. 13. Hybrid modeling of the m

Fig. 14. (a) Circular contour of different conditions; (b) contour
(3) As shown in Fig. 12(b), the maximum prediction error of our
hybrid model is 3.21 lm, which is significantly less than that of the
theoretical model (of which the maximal error is 10.07 lm). Based
on the prediction results from the hybrid model, the contour error
can be compensated for, to achieve the results shown in Fig. 14.
The maximal contour error before and after compensation is
12.53 and 4.58 lm, respectively (for a 63.4% reduction). The
experimental results prove that the hybrid model, which combines
the classical multi-domain theoretical modeling approach with a
typical AI-based modeling method, can significantly improve the
motion control accuracy of the machine tool’s feeding system.

5. Conclusion

This paper explores the integration and application of the new
generation of AI technology to machine tools, and analyzes the
developing trend of the machine tool from the NCMT to the SMT,
and finally to the IMT. This work examines the enabling principles
of autonomous sensing and connection, autonomous learning and
modeling, autonomous optimization and decision-making, and
achine tool’s feeding system.

error before and after compensation via hybrid modeling.
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autonomous control and execution using big-data-based AI tech-
nology. It reveals that the essential characteristic of the IMT is that
it can automatically generate, accumulate, and utilize knowledge
so as to achieve the goals of superior precision, good reliability,
high efficiency, good safety, and low consumption in the produc-
tion process. In order to endow the machine tool with intelligence,
three intelligent enabling technologies—the instruction-domain
analysis method, hybrid modeling of the digital twin, and
double-code control—are proposed here. An industrial prototype
of the INC is designed and developed, based on which three IMTs
are built. Three corresponding intelligent applications are imple-
mented on the three IMTs, thus validating the feasibility and
advantage of the proposed three enabling technologies in promot-
ing the surface machining quality (with no cutting marks at the
shape features of the surface), improving the machining efficiency
(a 27.8% improvement), and reducing the contour error of the feed-
ing system (a 63.4% reduction).

Our current research in this paper is a preliminary exploration
of the IMT. In future, we will focus on the following three research
topics: ① approaches for retrieving valid samples (both positive
and negative samples, for modeling via machine learning) from
the data accumulated in the machining process; ② technologies
for sharing and reusing knowledge between IMTs; and ③ the
application of AI technology in the machine tool industry and pro-
duction practice.
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