Frontiers of Information Technology & Electronic Engineering www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: jzus@zju.edu.cn ## Dynamic stability enhancement of interconnected multi-sour/e power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO ### Ali Darvish FALEHI[†], Ali MOSALLANEJAD (Department of Electrical Engineering, Shahid Beheshti University, Tehran 1%. 3113, Iran Received Sept. 30, 2015; Revision accepted Mar. 13, 2016; Crosschec. 1 Jan. 20, 2017 Abstract: Suppression of the dynamic oscillations of tie-line power exchanges and quency in the affected interconnected power systems due to loading-condition changes has been assigned as a promit of provided automatic generation control (AGC). To alleviate the system oscillation resulting from such load changes, implementation of pexible AC transmission systems (FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator (TCSC), which is one series type of the FACTS family, is used to augment the erall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hier phical laptive neuro-fuzzy inference system controller-TCSC (HANFISC-TCSC) to abate the two important issues in manufaceas are onnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization (MOPSO) has been chosen for his optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggified HANICC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different problems and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC TCSC compared to the conventional MOPSO-TCSC. **Key words:** Hierarchical adaptive neuro- inference system controller (HANFISC); Thyristor-controlled series compensator (TCSC); Automatic control (AGC); Multi-objective particle swarm optimization (MOPSO); Power system dynamic stab.li; y; 1 derconnected multi-source power systems http://dx.doi.org/10.16²1/F. EE.15 0317 CLC number: TM76; TP391 ### 1 Introducti develope and of electrical power systems in size and conplication, along with the expansion of interconverse power systems, has become an important and conviction systems, has become an important and conviction systems, and the like (Iracleous and Alexandridis, 2005; Kazemi et al., 2007; Bevrani et al., 2008; Tan and Xu, 2009). Dynamic behavior of a power system depends strongly on the operation conditions and load perturbation, which accordingly can exacerbate the oscillations' amplitude and loss of synchronism (Falehi *et al.*, 2012; Abd-Elaziz and Ali, 2015; Abd-Elazim and Ali, 2016). Automatic generation control (AGC) aims at untangling these problems. Generally, in every area of an interconnected power system, the AGC system detects the frequency and tie-line power exchanges, elicits the net changes in the generation, and accordingly regulates the set conditions of the generators through these areas (Ali and Abd-Elazim, 2011; 2013). Its accurate and safe operation involves an acceptable alleviation of the system frequency and tie-line power exchange deviations during load perturbation events (Kundur *et al.*, [©] ORCID: Ali Darvish FALEHI, http://orcid.org/0000-0002-8333- [©] Zhejiang University and Springer-Verlag Berlin Heidelberg 2017 1989). It can be stated that an AGC system tracks three principal targets in interconnected multi-source power systems: - 1. canceling the steady-state errors of system frequency deviations, - 2. achieving good tracking performance without persistent oscillations during load disturbances, and - 3. abating dynamic oscillations of tie-line power and frequency deviation. Future outlook in the competitive electricity market, heterogeneous species of equipment with a wide range of capacities, and fast power consumption can give rise to intense disturbance due to frequency oscillations. In case of non-availability of sufficient damping, these system frequency oscillations would lie within the inter-area oscillation mode (0.2–0.8 Hz), which can be maintained and intensified until the instability problem occurs (Kundur et al., 1989; Falehi et al., 2012). Therefore, many researchers have dealt with the competency of flexible AC transmission system (FACTS) devices, aimed at the effective control of power systems. Because of the better flexibility of these devices, they not only augment the power transfer capability of transmission line but also enhance the dynamic stability of the power tem (Gyugyi, 1992; Larsen et al., 1995; Cudhuri e al., 2003; Chaudhuri and Pal, 2004; Cai and Trlich, 2005; Falehi *et al.*, 2011; Falehi, 2012). Thyristor-controlled series compensator (TCSC) is one kind of series FACTS device cognized as effective and economical to sees power system oscillations, enhance transicat stability, alleviate sub-synchronous resona ce (SCR), and restrict shortcircuit currents (Mat. em et al., 1997; Li et al., 2000; del Rosso et. 2003; Luehi, 2012). A conventional multi-objective rticle swarm optimization-TCSC (MOP'sO-TCSC) has been constructed by a permanent s is cal acitor, which is shunted by a thyristo. ontro a reactor (TCR). Generally, TCR is and of a reactor in series with a bidirectional the sistor fired by a phase angle (between $\pi/2$ and π) in accordance with the capacitor's voltage. The reactance of TCSC is tuned directly by the thyristor's firing angle (Benabid et al., 2009; Soliman et al., 2011). By definition, occurrence of various disturbances in a power system would have special responses that may lead to instability. Therefore, it is absolutely essential that a high-performance controller be chosen for TCSC aimed at bringing back the power system to the stable status. Recently, fuzzy controllers have been widely and successfully implemented in a number of nonlinear systems whose behavior is extremely intricate to model (Karnavas and Papadopoulos, 2000; Elsnarei et al., 2005; Moradi et al., 2014). Power systems are such nonlinear systems; thus, the application of the benefits of both FLC and artificial neural network (ANN), the best strategy to controller adaptive neuro-fuzzy inference in the self-learning capability of Annumber of the procession function of firm virial erence (Zhang et al., 2008). Currently, of the most significant issues in the field fuzzy systems is how to bring down the number of the ded rules along with the relevant computational requirements. In the conventional controllers, the number of rules has exponen-'ially grown while the elicited results are hardly pre- \circ or explainable. As an example, for n input variables and membership functions, rules would be essential to set out a fuzzy controller. According to the mentioned relationship, the rule base will rapidly occupy the memory by increasing n, which may make it difficult to apply the fuzzy controller. One practical strategy to avoid this problem is set out the input variables hierarchically (Raju et al., 1991; Benítez and Casillas, 2013). A hierarchical fuzzy-rule-based system (HFRBS) is composed of a number of lowdimensional hierarchical fuzzy systems. This strategy will lead to a linear growth of the total number of rules, less computational effort, and high reliability of the fuzzy controller (Kikuchi et al., 1998; Lee et al., 2003). Eventually, this results in the hierarchical ANFIS controller-TCSC (HANFISC-TCSC) augment the power system dynamic stability. Moreover, being a multi-objective problem, it is imperative that an effective multi-objective optimization technique should be used. This is because a single objective function with contribution from several cost functions accompanied by relevant weights cannot certainly untangle the problem under study. Therefore, the MOPSO technique is selected to solve the optimization problem. For this study, two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydrothermal power systems, have been selected to test and evaluate the proficiency of HANFISC-TCSC. The occurrence of step load perturbation (SLP) affects the aforementioned power systems, so the efficiency and robustness of HANFISC-TCSC need to be evaluated. To overcome the uncertainty in the controller's parameters against different perturbations in all the areas of both power systems, a simultaneous optimization scheme is proposed in this study. In other words, SLP is assumed to occur in all areas of both interconnected multi-source power systems, and the simultaneous optimization scheme is subsequently settled. Meanwhile, a conventional MOPSO-TCSC is evaluated alongside HANFISC-TCSC to better demonstrate the efficiency of the latter. In the long run, simulation results have transparently ascertained the superior performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC in both multi-area interconnected power systems. Table 1 gives the notations used in this paper. ## 2 Description of the multi-objective particle swarm optimization technique ### 2.1 MOPSO review PSO is a stochastic global optimization technique based on the simulation of the social deportment of birds and fish into their flock. In PSC wich particle of the swarm regulates its trajectory in cordance with its own flight experience d the ther particles' flying experience by juxtaposit. In the search space (Hingorani and Gy 3yi, 2000; Eberhart et al., 2001). In this study, e p. oduce of optimization has more than one occitive, and thus enforcement of multi-co, 'ive optimization is obligatory. Generally, the multi viective alternative of a problem is m re afficult than the single-objective problem. The in racion of these objectives yields a set of effective so ations known as Pareto-optimal solutions, which provide a determinant more flexibility in the ei gagement of an appropriate alternative. Table 1 Non. relature | Table 100. | | | | | | | |--------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------------|--|--|--| | Notation | Description | N ation | Description | | | | | AGC | Automatic generation control | J_n | Speed deviation of the <i>n</i> th machine | | | | | TCSC | Thyristor-controlled series compositor | T_1, T_2, T_3, T_4 | Lead lag block time constants | | | | | HANFISC | Hierarchical adaptive neuro-fuzzy in nce | K_{TCSC} | TCSC controller's gain | | | | | | system controller | T_{TCSC} | TCSC controller's time constant | | | | | MOPSO | Multi-objective particle varm opti nization | GRC | Generation rate constraint | | | | | SLP | Step load perturbation | ACE | Area control error | | | | | FACTS | Flexible AC transi | B_i | Frequency bias coefficient of the ith area | | | | | HFRBS | Hierarchical fuzzy iulc-based system | a_{12}, a_{13}, a_{23} | Ratios of areas' power ratings | | | | | f(X) | Objective tu. tion's rector | R | Governor regulation | | | | | \boldsymbol{X} | Variable ve | $T_{ m g}$ | Governor time constant | | | | | g_i, h_j | P oblem's straint functions | $T_{\rm t}$ | Non-reheat time constant | | | | | F | Fe ble region | $T_{\rm r}$ | Reheat time constant | | | | | P^* | Parete cimal front | Δf_i | Frequency error of the <i>i</i> th area | | | | | c_1, c_2 | Global learning coefficients | $\Delta P_{\mathrm{D}i}$ | Incremental load change in area i | | | | | φ_1 φ_2 | A celeration constants | $\Delta P_{\mathrm{tie},i,j}$ | Tie-line power deviation between the <i>i</i> th area | | | | | φ | Mathematical function of acceleration constants | | and the jth area | | | | | 4/21 | Iteration index | $t_{\rm sim}$ | Time range of the simulation | | | | | h_{\perp} , W_{\min} | Final weight and initial weight | $N_{ m p}$ | Number of SLPs | | | | | FIS | Fuzzy inference system | $K_{\rm ef}, K_{\rm def},$ | HANFISC-TCSC controller's gains | | | | | A_i | Linguistic label | $K_{\rm uf},K_{\rm dep},K_{\rm u}$ | | | | | | $ heta_{ m c}$ | Angle of the current | $F_{ m f}$ | Objective function related to the low-frequency | | | | | ΔI | Supplemental current | | power oscillations | | | | | $k_{\rm c}$ | Rate of compensation | F_{p} | Objective function related to the tie-line power | | | | | T_{mn}^{0} | Synchronizing coefficient | | exchange deviations | | | | | $\Delta P_{mn}, \Delta Q_{mn}$ | Active and reactive power flow with TCSC | | | | | | ### 2.2 Basic concepts of multi-objective functions The problem's solution can be mathematically presented as follows: Find X which optimizes $$f(X) = [f_1(X), f_2(X), \dots, f_k(X)]$$ (1) subject to $$g_i(x) \le 0, i = 1, 2, ..., m,$$ (2) $$h_j(x) \le 0, j = 1, 2, ..., p,$$ (3) where $X=[X_1, X_2, ..., X_n]^T$ is the decision variable vector, $f_i(\cdot)$ (i=1, 2, ..., k) are the objective functions, and $g_i(\cdot)$ and $h_j(\cdot)$ are the problem's constraint functions. In fact, multi-objective optimization problems are aimed at attaining good compromises. To perceive the concept of Pareto optimality, some definitions have been introduced: **Definition 1** Provided two vectors $X, Y \in \mathbb{R}^n$, which can be cited that $X \le Y$ if $x_i \le y_i$ for i = 1, 2, ..., X the X dominates Y (indicated by $X \prec Y$) if $X \le Y$. **Definition 2** A decision variable vector $X \in_{\mathcal{X}} \mathbb{R}^n$ is non-dominated regarding χ , if the e is no $X' \in \chi$ such that $f(X') \prec f(X)$. **Definition 3** A decision v riable vector $X^* \in F \subset \mathbb{R}^n$ (F is the doable area) is Parc. optimal if it is non-dominated regards F. **Definition 4** In P... optimal set P^* is determined by $$P^* = \{ X \in F \mid X \text{ is Pareto optimal} \}. \tag{4}$$ **De nition** 5 The Pareto front PF* is determined by $$PF^* = \{ f(X) \in \mathbb{R}^k \mid X \in P^* \}.$$ (5) ### 2.3 PSO construction For the proposed approach, the velocity and position of a particle are computed as follows (Panda and Padhy, 2008): $$v_{i,d}^{(t+1)} = \psi \left[w \cdot v_{i,d}^{(t)} + c_1 + r_1(\text{pbest}_{i,d} - x_{i,d}^{(t)}) + c_2 + r_2(\text{gbest}_d - x_{i,d}^{(t)}) \right],$$ (6) $$x_{i,d}^{(t+1)} = x_{i,d}^{(t)} + v_{i,d}^{(t+1)}, \quad i = 1, 2, ..., n, d = 1, 2, ..., m,$$ (7) $$v_d^{\min} \le v_{i,d}^{(t)} \le v_d^{\max},\tag{8}$$ $$\psi = \frac{2}{2 - \varphi - \sqrt{\varphi^2 - 4\varphi}},\tag{9}$$ $$\varphi = \varphi_1 + \varphi_2, \quad \varphi > 4, \tag{10}$$ $$w = w_{\text{max}} - \frac{w_{\text{max}} - w_{\text{r}}}{\text{iter}_{\text{max}}} \cdot \text{iter},$$ (11) where c_1 and c_2 are both pos. The constants, called personal and global 1:a. 19 coefficients, respectively, r_1 and r_2 are random num. r_2 produced from a uniform distribut in in range (0, 1), $v_{i,d}^{(t)}$ is the velocity of the dth part of p. icle i at iteration t, $x_{i,d}^{(t)}$ is the position of the particle i at iteration t, pbest_{i,d} is the personal best value of the dth part of particle i, a st_d is the global best value of the dth part of the grov ψ is a constriction factor extracted from the abil ty analysis of Eq. (6) to confirm the system to converge but not precipitately, ψ is a mathematical function of φ_1 and φ_2 , which are acceleration constants, and w is the inertia weight for PSO's convergence, adjusting the impact of the prior velocities on the present velocity to find a suitably optimal solution. Likewise, iter_{max}, iter, w_{min} , and w_{max} are the maximum iteration number, current iteration index, final weight, and initial weight, respectively. ### 2.4 Non-dominated sorting PSO principle The algorithm carries out non-dominated sorting to retain the solutions situated in the first five fronts (Fig. 1). The procedure figures out the first particles of the non-dominated front for all of the archive's members. Whenever the front length is less than the maximum bound, the front will be retained in the archive. Therefore, to figure out the individuals in the next front, the first front's solutions are provisionally overlooked, and the above procedure is replicated till five fronts are found (Fig. 1a). Whenever the front is to be retained in the archive, it will be larger than the admissible bound and a crowding length is calculated to sieve the solutions and the following fronts will be omitted (Fig. 1b). The flowchart of the proposed algorithm is shown in Fig. 1c. Fig. 1 Non-dominated MOPSO tec' nique's procedure: (a) the front length is less than the n vimum bound and the front will be retained in the arc. (b) the front length is larger than the max bound and the following fronts will be omitted; (c) the flowchart of the proposed algorithm ## 3 Design C TCSC by hierarchical ANFIStype fu⊇ry stra. 3y ## 3.1 F z, log'c guideline In ger cral, a fuzzy system is set up based on four structures: fuzzifier, inference engine, kn. riedge base, and defuzzifier. At first, the fuzzy system computations are transformed from the numeric sets into the fuzzy sets, which is called fuzzification. In fuzzy set theory, the inference engine is the heart of the fuzzy system that carries out all logic operations in the system. The knowledge base system is made up of membership functions and if-then rules (Dash *et al.*, 2004; Talaat *et al.*, 2010). ### 3.2 ANFIS control strategy and structure ANFIS is a category of adaptive multi-layer feed-forward networks functionally similar to a fuzzy inference system (FIS). In fact, ANFIS acts in the same way as an adaptive network simulator of a Takagi-Sugeno type FIS. ANFIS synthesizes the solf-learning capability of neural network (NN) with the fuzzy's linguistic expression function. Talaat et a., 2010). In accordance with the first-or of Sugeno fuzzy style, the concept of ANFIS structure at the two fuzzy if-then rules can be represented as follows: **Rule 1** If x is A_1 and y is B_1 , ... $n f_1 = p_1 x + q_1 y + r_1$. **Rule 2** If x is A_2 ard y B_2 , then $f_2 = p_2 x + q_2 y + r_2$. The fuzz reas oning is explained in Fig. 2a, and the relevant eq. area. ANFIS construction is presented in Fig. 2b. Fig. 2 Multi-layer perception fuzzy reasoning (a) and equivalent ANFIS structure (b) The ANFIS structure consists of five layers. Each layer incorporates a number of nodes described by the node's function. The node functions in the same layer are of the same function family and are represented as follows: Layer 1: Each node *i* in this layer is indicated by a square node with a node (Fig. 2b) function: $$O_{i}^{1} = \mu_{A_{i}}(x) = \begin{cases} 0, & x \leq a_{i}, \\ \frac{x - a_{i}}{b_{i} - a_{i}}, & a_{i} \leq x \leq b_{i}, \\ \frac{c_{i} - x}{c_{i} - b_{i}}, & b_{i} \leq x \leq c_{i}, \\ 0, & c_{i} \leq x, \end{cases}$$ (12) where x represents the input to node i, A_i represents the linguistic label related to this node function, O_i^1 is the membership function of A_i and defines the degree to which the presented x satisfies A_i , and a_i , b_i , and c_i comprise the parameter set. ANFIS suggests several classes of membership functions, i.e., trapezoidal, triangular, generalized bell, Π -shaped, Gaussian curve, and Gaussian combination. Commonly, $\mu_{A_i}(x)$ is selected to be triangle-shaped with its maximum equal to 1 and minimum equal to 0. Eq. (12) can be rewritten in a contracted form: $$\mu_{A_i}(x) = \max\left(\min\left(\frac{x - a_i}{b_i - a_i}, \frac{c_i - x}{c_i - b_i}\right), 0\right).$$ (13) When changing the values of a_i , b_i , d_i , the triangle-shaped functions change consequency and thus represent different forms of nembership functions on the linguistic label A_i . They piecewise and continuous differentiable functions and ingible to be node functions. These parameters are referred to as premise parameters. Layer 2: Each node in this layer, indicated by a circle node tagged 1. multiplies the entering signals and sends the induction of $$O_i^2 = w_i = \mu_{A_i}(x)\mu_{B_i}(y).$$ (14) The efore, each node output indicates the firing ength of a rule. Layer 3: Each node in this layer, indicated by a circle node tagged N, computes the ratio of the ith rule's firing strength to the sum of all rules' firing strengths: $$O_i^3 = \overline{w}_i = \frac{w_i}{w_1 + w_2}.$$ (15) The outputs of this layer are called normalized firing strengths. Layer 4: Each node in this layer, indicated by a square node, calculates the contribution of the *i*th rule to the whole output: $$O_i^4 = \overline{w}_i f_i = \overline{w}_i (p_i x + q_i y + r_i), \tag{6}$$ where \overline{w}_i is the output of layer 3 and p_i and q_i , and r_i comprise the parameter set. This layer's parameters are referred to as consequent parameters. Layer 5: The single noc indicated by a circle node, calculates the fire 1 output the summation of all entering signals: $$O_i^5 = \text{overa.} \quad \text{output} = \sum \overline{w}_i f_i = \frac{\sum_i w_i f_i}{\sum_i w_i}.$$ (17) As can be seen in the suggested ANFIS structure (Fig. 2b), the overall output, i.e., f, can be represented by a 1 near combination of the consequent parameters: $$f = \frac{w_1}{w_1 + w_2} f_1 + \frac{w_2}{w_1 + w_2} f_2$$ $$= \overline{w}_1 f_1 + \overline{w}_2 f_2$$ $$= (\overline{w}_1 x) p_1 + (\overline{w}_1 y) q_1 + \overline{w}_1 r_1$$ $$+ (\overline{w}_2 x) p_2 + (\overline{w}_2 y) q_2 + \overline{w}_2 r_2.$$ (18) As can be seen in Fig. 3, the membership functions of the input variables represent seven sets. The rule table and the membership function boundaries for both subsystems presented in Table 2 are similarly selected. Fig. 3 Normalized membership function for inputs (References to color refer to the online version of this figure) | Table 2 Look up table of fuzzy fules | | | | | | | | |--------------------------------------|-------------------------|----|----|----|----|----|----| | $\Delta \dot{\omega}$ | $\Delta\omega/\Delta u$ | | | | | | | | $\overline{\Delta \! \dot{P}}$ | NB | NM | NS | ZE | PS | PM | PB | | NB | NB | NB | NB | NB | NM | NS | ZE | | NM | NB | NM | NM | NM | NS | ZE | PS | | NS | NB | NM | NS | NS | ZE | PS | PM | | ZE | NB | NM | NS | ZE | PS | PM | PB | | PS | NM | NS | ZE | PS | PS | PM | PB | | PM | NS | ZE | PS | PM | PM | PM | PB | | PB | ZE | PS | PM | PB | PB | PB | PB | Table 2 Look up table of fuzzy rules ### 4 Hierarchical fuzzy-rule-based system In a hierarchical fuzzy system, the total number of rules is reduced by reconstructing the fuzzy rules into hierarchical, simple fuzzy subsystems. In this strategy, the modulation process is hierarchically carried out from the initial level to the final level (Takagi and Sugeno, 1983; Jang, 1993; Gyugyi *et al.*, 1997; Rojas *et al.*, 2000). In other words, the first level renders an un-purified output, subsequently lined up by the second level so that the process can be replicated in following levels. Fig. 4a show; the general structure of HFRBS with *N* input variables. It is considered that *M* members hip motions are used to fuzzify each input variable, and the total number of rules can be presented a follows: $$M^{N}$$ rules in a continual FRBS. (19) $M^{2}(N-1)$ rules in a hierarch. al FRBS. (20) A neoteric mode of archical fuzzy structure based on the ANFIS confoller, i.e., HANFISC-TCSC (Fig. 5), is suggested to enhance the dynamic performance of TCS. By using this hierarchical structure, we introller's performance is enhanced without exponentilly growing the rule table. As shown, this structure is composed of two ANFIS subsystems, and in subsystem is fed by two inputs. Fig. 4 Hierarchical fuzzy structure (a) and conventional FLC structure method (b) Fig. 5 Construction of the proposed HANFISC-TC ## 5 Linearized model of interconnected multiarea multi-source power systems with HANFISC-TCSC ### 5.1 Linearization of 1 SC relevant to AGC TCSC is one f the series FACTS families that have been con no med in transmission lines to control the powe flow via compensation of transmission). reactance. Generally, it is constructed by a series compensating capacitor shunted by a TCR, these reactance is adjusted by firing the bidirectional thy, or. Also, the reactance of the TCSC can be For essed by a net equivalent reactance (X_{TCSC}) , and its relevant compensation can be obtained by operating in either the capacitive or inductive mode (Li et al., 2000; del Rosso et al., 2003; Falehi, 2012). Fig. 6 shows a single-line diagram of an interconnected multi-area power system of two areas with the studied TCSC located in series with the tie-line to carry out the linearization process. Because of the trivial resistance of the tie-line with respect to the inductance of the tie-line, it is neglected in an acceptable approximation. Anyhow, TCSC can be used to suppress the area frequency oscillations by controlling the tie-line power quickly. Fig. 6 Single-line diagram of a two-area interconnected multi-area power system with series-connected TCSC With the TCSC located in series with the tie-line, the flow of current from area m to area n can be formulated as $$I_{mn} = \frac{V_m \angle \theta_m - V_n \angle \theta_n}{j(X_L - X_{TCSC})}.$$ (21) Also, the flow of power from bus m to bus n is $$S_{mn} = V_m I_{mn}^* = P_{mn} + jQ_{mn}.$$ (22) By extracting the real component of Eq. (22), we obtain $$P_{mn} = \frac{V_m V_n}{X_L - X_{TCSC}} \sin(\theta_m - \theta_n).$$ (23) Let k_c denote the rate of compensation by TCSC, i.e., $k_c=X_{TCSC}/X_L$. Eq. (23) can be represented by $$P_{mn} = \frac{V_m V_n}{X_L (1 - k_s)} \sin(\theta_m - \theta_n). \tag{24}$$ Provided Eq. (24) is linearized, the relationship of the active power flow can be written as $$\Delta P_{mn} = \frac{V_m V_n}{X_L (1 - k_c^0)^2} \sin(\theta_m^0 - \theta_n^0) \Delta k_c$$ $$+ \frac{V_m V_n}{X_L (1 - k_o^0)} \cos(\theta_m^0 - \theta_n^0) (\Delta \theta_m - \Delta t)$$ (2.) Let T_{mn}^0 denote the synchronizing coefficient: $$T_{mn}^{0} = \frac{V}{X_{I}} \cos(\iota_{n}^{0} - \theta_{n}^{0}),$$ and also $$I_{mn}^0 = \frac{V_m V_n}{X_L} \sin(\theta_m^0 - \theta_n^0).$$ en, eq. (25) can be written as $$\Delta P_{mn} = \frac{J_{mn}^0}{(1 - k_c^0)^2} \Delta k_c + \frac{T_{mn}^0}{1 - k_c^0} (\Delta \theta_m - \Delta \theta_n). \quad (26)$$ Since $\Delta \theta_m = \int \Delta \omega_m dt$ and $\Delta \theta_n = \int \Delta \omega_n dt$, the Laplace transform of Eq. (26) is $$\Delta P_{mn}(s) = \frac{J_{mn}^{0}}{(1 - k_{c}^{0})^{2}} \Delta k_{c}(s) + \frac{T_{mn}^{0}}{s(1 - k_{c}^{0})} (\Delta \omega_{m}(s) - \Delta \omega_{n}(s)).$$ (27) According to Eq. (27), the flow of tie-ling over can be controlled by $\Delta k_{\rm c}(s)$, i.e., by regulating the stee of compensation ($X_{\rm TCSC}$). The relevange controller to modify the TCSC equivalent reactable collection by the following transfer function: $$\Delta k_{\rm c}(s) = \frac{1 + T_1 s}{1 + T_2 s} \frac{1 + T_3}{1 + T_4 s} \frac{K_{\rm TC}}{T_{\rm TCSC}} \Delta \omega_m(s), \quad (28)$$ where $K_{\rm TCSC}$ and $T_{\rm TCSC}$ are γ gain and time constant of the TCSC ontroller, respectively, and T_1 , T_2 , T_3 , and T_4 are time γ instants of lead lag phase compensation blacks. According Eq. (28), $\Delta\omega(s)$ can be used as the control signal of TCSC to adjust X_{TCSC} and regulate in q ow of tie-line power between two areas and subsquently suppress the dynamic oscillations of line power exchanges and frequency. Thus, $$\Delta P_{mn}(s) = \frac{J_{mn}^{0}}{(1 - k_{c}^{0})^{2}} \frac{1 + T_{1}s}{1 + T_{2}s} \frac{1 + T_{3}s}{1 + T_{4}s} \frac{K_{\text{TCSC}}}{1 + sT_{\text{TCSC}}} \Delta \omega_{m}(s) + \frac{T_{mn}^{0}}{s(1 - k_{c}^{0})} (\Delta \omega_{m}(s) - \Delta \omega_{n}(s)).$$ (29) ## 5.2 Linearized model of a two-area hydrothermal-diesel power system As has already been pointed out, AGC can track and control only normal load changes that are slow and small. Hence, the nonlinear dynamical equations of the power system must be linearized during small load changes around an operating point. A schematic of a linearized interconnected power system with a TCSC in series with the tie-line is presented in Fig. 7a. The generation rate constraint (GRC) is considered 10%/min for the thermal area, and 270%/min for raising generation and 360%/min for lowering generation in the hydro area. The power system has two generating areas with different capacities (area 1, 1800 MW and area 2, 1200 MW). Both areas consist of two hydro generation units. The other relevant parameters are given in Appendix A. Fig. 7 Linearized model of a two-area hydro-thermal-diesel power system (a) and linearized model of a three-area hydro-thermal power system (b) ## 5.3 Linearized model of a three-area hydrothermal power system The power system under study with the presence of TCSC has been constructed by three equal generating areas: two reheat thermal system for areas 1 and 2, and a hydro system for area 3 (Fig. 7b). The characteristics of the steam turbine differ from those of the hydro turbine in many respects. GRC is considered $3\%/\min$ in thermal areas, and $270\%/\min$ (4.5%/s) for raising and $360\%/\min$ (6%/s) for lowering generation in the hydro area. This power system has been constructed by three equal generating areas with 2000 MW capacity. A bias setting of B_i is chosen for both thermal and hydro areas. The other relevant parameters are given in Appendix B. ## 5.4 Multi-area multi-source interconnected power systems with the presence of HANFISC-TCSC Naughting the area control error (ACE) of each area of an interconnected power system has been formulated as the main aim of the AGC system. The system frequency and tie-line power exchange deviations are the two principal and fundamental criteria regarding ACE, which can be stated as for the two (Goshal, 2004; Divya and Nagendra Rao, 2005): $$ACE_{i} = \sum_{j} \Delta p_{\text{tie},i,j} + P_{i} \Delta \hat{y_{i}}, \qquad (30)$$ where $\Delta p_{\text{tie}, i, j}$ is the tie-line power as auton between the *i*th area and the *j*th area, $p_i = 1/2$ frequency bias coefficient of the *i*th rea, and Δj_i is the frequency error of the *i*th are As has already to in stated, HANFISC-TCSC is suggested in power of ACC, aiming at augmenting the overall dynamic prformance of both interconnected power systems. In the meantime, a conventional MOPS CCSC has been tested and evaluated along with the aggested structure to clarify its high dynamic erformance. In this regard, the related parameters that should be optimally tuned by MOPSO are: - 1. HANFISC-TCSC: K_{ef} , K_{def} , K_{uf} , K_{dep} , and K_{u} . - 2. Conventional TCSC: K_{TCSC} , T_{TCSC} , T_1 , and T_3 . The values of T_2 and T_4 are taken as 0.1. ### 5.5 Objective functions Hitherto, a number of techniques have been used to evaluate the performance of a control system, including the integral time-weighted absolute error (ITAE), integral time-weighted squared error (ITSE), integral squared error (ISE), and integral absolute error (IAE). In spite of that, an effective strategy has been executed for the simultaneous optimal adjustment of both the controllers, aimed at clarify. The high efficiency of HANFISC-TCSC compared to conventional MOPSO-TCSC. This is tionship is indicated by the following functions (a 'ehi and Rostami, 2011; Falehi, 2013): $$J_{\rm f} = \int_{-\infty}^{t=t} \sum_{|\Delta|} |\Delta t| dt, \tag{31}$$ $$J_{p} = \int_{t=0}^{t=t_{\text{sim}}} \Delta p_{\text{tie},i,j} t dt, \qquad (32)$$ $$I_{f} - \sum_{k=1}^{N_{p}} J_{f,k},$$ (33) $$F_{p} = \sum_{k=1}^{N_{p}} J_{p,k}, \qquad (34)$$ wher $N_{\rm p}$ and $t_{\rm sim}$ are the number of SLPs and simulation time period, respectively, $J_{\rm f}$ and $J_{\rm p}$ are two prominent benchmarks controlling the system stability, and $F_{\rm f}$ and $F_{\rm p}$ are the suggested functions related to carrying out the simultaneous optimal scheme to mitigate the low-frequency power oscillations and the tie-line power exchange deviations, respectively. Eventually, the problem is formulated as the following optimization problem: $$\min F_{\rm f} \text{ and } F_{\rm p}.$$ (35) A flowchart of the optimization problem based on simultaneous adjustment by considering a 2% SLP in all areas of both power systems is shown in Fig. 8. #### 6 Simulation results ### 6.1 Two-area hydro-thermal-diesel power system To corroborate the performance of HANFISC-TCSC by performing the simultaneous optimal tuning scheme, the power system has been affected by a 2% SLP condition in both areas. This optimization strategy has been carried out for both HANFISC-TCSC and conventional MOPSO-TCSC by appraising the Fig. 8 Simultaneous optimization scheme based on m. objective particle swarm proposed fitness function regarding two SLP conditions. Optimal parameters of both portrollers are accordingly tabulated in Table 2 and 4. Meanwhile, the eigenvalue analyses in the presence of both HANFISC-TCSC and conventional MOPSO-TCSC are depicted in Fig. 2 to obvious that the power system stabile 4 is beth when HANFISC-TCSC is incorporated in 2 power system as compared to the conventional MOPSO-TCSC. The 3 primum parameters of the two-area hydrothe mal-diesel power system's HANFISC-TCSC | $K_{\rm ef}$ | K_{def} | $K_{ m uf}$ | K_{dep} | K_{u} | | |--------------|--------------------|-------------|------------------|------------------|--| | 8478.د د | 1.77953 | 2.48272 | 17.6579 | 39.2464 | | Table 4 Optimum parameters of the two-area hydrothermal-diesel power system's conventional MOPSO-TCSC | K_{TCSC} | $T_{ m TCSC}$ | T_1 | T_3 | |---------------------|---------------|---------|---------| | 0.37237 | 0.51803 | 0.38512 | 0.55979 | Fig. 9 Eigenvalues of a two-area by dro-ther. 1-desel power system with both controller In the long term, the 'sh performance of HANFISC-TCSC ain.' at augmentation of the power system's dynamic. bility has been revealed by the results in the 'ollowing sections. ### 6.1.1 Perturbatic in area 1 In this parallel f the study, a 2% SLP takes place at t=10 s in area 1 to evaluate the performance of the suggested controller. As described above, the optimization scheme based on MOPSO undertakes the same sufficient of the controllers' parameters. The system responses presented in Fig. 10 have confirmed the above-mentioned conclusion. ### 6.1.2 Perturbation in area 2 For this state, it is considered that a 3% SLP impacted the power system at *t*=10 s in area 2 to evaluate the performance of the proposed controller. Similar to the previous case, after performing the optimization scheme, the system response obtained has confirmed the high dynamic performance of HANFISC-TCSC (Fig. 11). ### 6.2 Three-area hydro-thermal power system The effectiveness and robustness of HANFIS-TCSC has been thoroughly evaluated to augment the power system's dynamic stability with regard to a 3% SLP, which is triggered at *t*=10 s in all areas of this power system. The response of the affected power system has been dealt with and analyzed employing both controllers. After unraveling the optimization problem, the optimum parameters of HANFIS-TCSC and conventional MOPSO-TCSC were evaluated (Tables 5 and 6). Fig. 10 Power system responses under a 2% SLP in area 1 at t=10 s: (a) frequency error of the first area; (b) tieline power deviation between the first and the second areas Fig. 11 Power system responses under a 3% SLP in area 2 at t=10 s: (a) frequency error of the first area; (b) tieline power deviation between the first and the second areas Table 5 Optimal parameters of the hydro-thermal power system's HANFISC-TCSC | K_{ef} | K_{def} | $K_{ m uf}$ | K_{dep} | K_{u} | |-------------------|--------------------|-------------|------------------|------------------| | 1.1372 | 0.9866 | 1.4796 | 0.75322 | 0.015271 | Table 6 Optimal parameters of the hydro-thermal power system's conventional MOPSO-TCSC | K_{TCSC} | $T_{ m TCSC}$ | T_1 | T_3 | |-------------------|---------------|---------|---------| | 0.26983 | 0.35560 | 0.29761 | 0.40645 | The Pareto solution front of the optimization problem is shown in Fig. 12. The "genvalue analyses in presence of both HANFI." -TCSC and the conventional MOPSO-TC C are presented in Fig. 13. The results presented he precisely show more stability of the power system using HANFISC-TCSC as compared to a power system with the conventional MOPSO-TCSC. Fig. 12 Pareto front extracted from objective functions of a three-area hydro-thermal power system Fig. 13 Eigenvalues of a three-area hydro-thermal power system with both controllers HANFISC-TCSC has displayed and proved its high dynamic performance, as shown in the following sections (Figs. 14–16). ### 6.2.1 Perturbation in area 1 For this section, we consider a 3% SLP to be occurring at t=10 s in area 1, and we appraise the dynamic performance of both controllers. As previously mentioned, the simultaneous optimization scheme based on MOPSO has been carried out to tune the controllers' parameters considering the occurrence of perturbation in each area of this power system. The system response is presented in Fig. 14. The represented curves have transparently corroborated above-mentioned citation. Here, as in Section 5.1, all criteria of stability, including overshoot, undershoot, settling time, steady-state error of tie-line power, and frequency exchanges significantly decrease with HANFISC-TCSC compared with the conventional MOPSO-TCSC. It can be said that HANFISC-TCSC has significantly enhanced the dynamic stability of the power system. Fig. 14 Power vstem remasses under a 3% SLP in area 1 at t=10 s. (a) ruency error of the first area; (b) tieline power deviation between the first and second areas ### 6.2.2 1 'urbation in area 2 Similar to the pervious case, the power system is a sumed to be affected by a 4% SLP in area 2 at *t*=10 s and we evaluate the dynamic performance of HANFISC-TCSC and the conventional MOPSO-TCSC, respectively, in dealing with this situation (Fig. 15). As expected, the power system's dynamic oscillations have been impressively alleviated by the proposed controller compared to the conventional MOPSO-TCSC. Fig. 15 Power system responses under a 4% SLP in area. It t=10 s: (a) frequency error of the first area; (b) tieline wer deviation between the first and third areas ### 6.2.3 Perturbation in area 3 For this part of study, a 5% SLP is assumed to impact the power system at t=10 s in area 3, and we appraise the dynamic performance of HANFISC-TCSC. As can be seen from Fig. 16, the dynamic stability of the power system has been significantly enhanced by the proposed controller. ### 7 Conclusions In this paper, we proposed a high-performance HANFISC-TCSC to rapidly bring the affected interconnected multi-area power system to the stable status. For this, the alleviation of the two prominent issues, i.e., low-frequency power oscillations and tie-line power exchange deviations, has been formulated as a multi-objective optimization problem. Meanwhile, MOPSO was chosen to solve the problem under study. Two different multi-area multi-source interconnected power systems, i.e., two-area hydrothermal-diesel and three-area hydrothermal power systems, have been considered to provide an Fig. 16 Power system responses under a 5% SLP in area 3 at *t*=10 s: (a) frequency error of the third area; (b) tieline power deviation between the second and third area? appropriate setting to evaluate the dynamic pe. r-mance of HANFISC-TCSC. In the intering the capability of HANFISC-TCSC has been perfect, evaluated along with the conventional MOPSO-TCSC with regard to the incidence of SLP in a lareas of both test power systems. Simulations results are not multi-area interconnected power systems are have conclusively proved the high dynamic performance of the proposed HANFISC-TCS in imparison with the conventional MOPS Trees. ### Reference Abd-Elazin, S.M., A. E.S., 2016. Load frequency controller d vign via BAT algorithm for nonlinear interconnected power syst m. *Int. J. Electr. Power Energy Syst.*, 77:16. #m·//dx.doi.org/10.1016/j.ijepes.2015.11.029 J-Elaziz, A.Y., Ali, E.S., 2015. Cuckoo search algorithm based load frequency controller design for nonlinear interconnected power system. *Int. J. Electr. Power Energy Syst.*, **73**:632-643. http://dx.doi.org/10.1016/j.ijepes.2015.05.050 Ali, E.S., Abd-Elazim, S.M., 2011. Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. *Int. J. Electr. Power Energy Syst.*, **33**(3):633-638. http://dx.doi.org/10.1016/j.ijepes.2010.12.022 Ali, E.S., Abd-Elazim, S.M., 2013. BFOA based design of PID controller for two area load frequency control with non-linearities. *Int. J. Electr. Power Energy Syst.*, **51**:224-231. http://dx.doi.org/10.1016/j.ijepes.2013.02.030 Benabid, R., Boudour, M., Abido, M.A., 2009. Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization. *Electr. Power Syst. Res.*, **79**(12):1668-1677. http://dx.doi.org/10.1016/j.epsr.2009.07.004 Benítez, A.D., Casillas, J., 2013. Multi-c' ective gene le learning of serial hierarchical fi zzy estem for large-scale problems. *Soft Compu.*, 17(1):165 4. http://dx.doi.org/10.1007/s00500 12-0909-2 Bevrani, H., Hiyama, T., Mita Y., 108. Power system dynamic stability and voltage regulation enhancement using an optimal gair vector. C. Eng. Pract., 16(9): 1109-1119. Cai, L., Erlich, V 200. Simultaneous coordinated tuning of PSS and FA Toping controllers in large power systems. IEEE 1. 75. Power Syst., 20(1):294-300. http://....org/40.1109/TPWRS.2004.841177 Chaudhuri, B., P., I., B., 2004. Robust damping of multiple swings modes employing global stabilizing signals with CSC. *IEEE Trans. Power Syst.*, **19**(1):499-506. p://dx.doi.org/10.1109/TPWRS.2003.821463 auchuri, B., Pal, B., Zolotas, A.C., 2003. Mixed-sensitivity approach to H_{∞} control of power system oscillations employing multiple FACTS devices. *IEEE Trans. Power Syst.*, **18**(3):1149-1156. http://dx.doi.org/10.1109/TPWRS.2003.811311 Dash, P.K., Morris, S., Mishra, S., 2004. Design of a nonlinear variable-gain fuzzy controller for FACTS devices. *IEEE Trans. Contr. Syst. Technol.*, **12**(3):428-438. http://dx.doi.org/10.1109/TCST.2004.824332 del Rosso, A.D., Canizares, C.A., Dona, V.M., 2003. A study of TCSC controller design for power system stability improvement. *IEEE Trans. Power Syst.* **18**(4):1487-1496. http://dx.doi.org/10.1109/TPWRS.2003.818703 Divya, K.C., Nagendra Rao, P.S., 2005. A simulation model for AGC studies of hydro-hydro systems. *Int. J. Electr. Power Energy Syst.*, **27**(5-6):335-342. http://dx.doi.org/10.1016/j.ijepes.2004.12.004 Eberhart, R.C., Shi, Y.H., Kennedy, J., 2001. Swarm Intelligence. Academic Press, San Diego, CA. Elshafei, A.L., El-Metwally, K.A., Shaltout, A.A., 2005. A variable-structure adaptive fuzzy-logic stabilizer for single and multi-machine power systems. *Contr. Eng. Pract.*, **13**(4):413-423. http://dx.doi.org/10.1016/j.conengprac.2004.03.017 Falehi, A.D., 2012. Simultaneous coordinated design of TCSC-based damping controller and AVR based on PSO technique. *Electr. Rev.*, 88(5):136-140. Falehi, A.D., 2013. Design and scrutiny of maiden PSS for alleviation of power system oscillations using RCGA and PSO techniques. *J. Electr. Eng. Technol.*, **8**(3):402-410. - http://dx.doi.org/10.5370/JEET.2013.8.3.402 - Falehi, A.D., Rostami, M., 2011. Design and analysis of a novel dual-input PSS for damping of power system oscillations employing RCGA-optimization technique. *Int. Rev. Electr. Eng.*, **6**(2):938-945. - Falehi, A.D., Dankoob, A., Amirkhan, S., *et al.*, 2011. Coordinated design of STATCOM-based damping controller and dual-input PSS to improve transient stability of power system. *Int. Rev. Electr. Eng.*, **6**(3):1308-1318. - Falehi, A.D., Rostami, M., Doroudi, A., et al., 2012. Optimization and coordination of SVC-based supplementary controllers and PSSs to improve the power system stability using genetic algorithm. Turk. J. Electr. Eng. Comput. Sci., 20(5):639-654. http://dx.doi.org/10.3906/elk-1010-838 - Goshal, S.P., 2004. Optimization of PID gains by particle swarm optimization in fuzzy based automatic generation control. *Electr. Power Syst. Res.*, **72**(3):203-212. http://dx.doi.org/10.1016/j.epsr.2004.04.004 - Gyugyi, L., 1992. Unified power-flow control concept for flexible AC transmission systems. *IEE Proc. C*, **139**(4): 323-331. http://dx.doi.org/10.1049/ip-c.1992.0048 - Gyugyi, L., Schauder, C.D., Sen, K.K., 1997. Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines. *IEEE Trans Power Del.*, **12**(1):406-417. http://dx.doi.org/10.1109/61.568265 - Hingorani, N.G., Gyugyi, L., 2000. Understanding F CTS: Concepts and Technology of Flexible AC Transm. On Systems. IEEE Press, New York. - Iracleous, D.P., Alexandridis, A.T., 2005. A null sk automatic generation control for power egulation. *Tectr. Power Syst. Res.*, **73**(3):275-285. http://dx.doi.org/10.1016/j.epsr.20 06.011 - Jang, J.S.R., 1993. ANFIS: adaptive-n. \(\sigma^{1}\)-based fuzzy inference system. *IEEE* \(\sigma \) Syst. Man Cybern., \(23(3):665-685\). http://dx.doi.crg/10. 109/21.256541 - Karnavas, Y.L., Papado po. s, D.F., 2000. Excitation control of a power-gene ing tem based on fuzzy logic and neural networks. *In.* *Trans. Electr. Energy Syst., **10**(4): 233-241 in *//dx.doi.v. g/10.1002/etep.4450100406 - Kazemi, A., Jahea Stlagh, M.R., Naghshbandy, A.H., 2007. Application of a new multi-variable feedback linearization of the for improvement of power systems transient stab. J. L. Electr. Power Energy Syst., 29(4): 322-32. http://dx.doi.org/10.1016/j.ijepes.2006.07.011 - 7., Otake, A., Nakanishi, S., 1998. Functional completeness of hierarchical fuzzy modeling. *Inform. Sci.*, **110**(1-2):51-60. - http://dx.doi.org/10.1016/S0020-0255(97)10076-7 - Kundur, P., Klein, M., Rogers, G.J., *et al.*, 1989. Application of power system stabilizers for enhancement of overall system stability. *IEEE Trans. Power Syst.*, **4**(2):614-626. http://dx.doi.org/10.1109/59.193836 - Larsen, E.V., Sanchez-Gasca, J.J., Chow, J.H., 1995. Concepts of design of FACTS controllers to damp power swings. - *IEEE Trans. Power Syst.*, **10**(2):948-956. http://dx.doi.org/10.1109/59.387938 - Lee, M.L., Chung, H.Y., Yu, F.M., 2003. Modeling of hierarchical fuzzy systems. *Fuzzy Sets Syst.*, **138**(2):343-361. http://dx.doi.org/10.1016/S0165-0114(02)00517-1 - Li, B.H., Wu, Q.H., Turner, D.R., et al., 2000. Modeling of TCSC dynamics for control and analysis of power system stability. Int. J. Electr. Power Energy Syst., 22(1). http://dx.doi.org/10.1016/S0142-0615(99)00037-X - Mattavelli, P., Verghese, G.C., Stankovic, A.. 1997. Phasor dynamics of thyristor-controlled series capa or systems. *IEEE Trans. Power Syst.*, **12**(3):1.59-1267. http://dx.doi.org/10.1109/59.630-9 - Panda, S., Padl. N.P. 2008. Comparison of particle swarm optimization. 'genetic algorithm for FACTS-based control design. *Appl. Soft Comput.*, **8**(4):1418-1427. http://dx.o.g/10.1016/j.asoc.2007.10.009 - Raju, G., Zhou, J., Kisner, R., 1991. Hierarchical fuzzy control. *Int. J. Contr., **54**(5):1201-1216. p://dx.doi.org/10.1080/00207179108934205 - vias I., Bernier, J.L., Rodriguez-Alvarez, R., et al., 2000. What are the main functional blocks involved in the design of adaptive neuro-fuzzy inference systems? IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks, p.551-556. - http://dx.doi.org/10.1109/IJCNN.2000.859453 Soliman, H.M., Dabroum, A., Mahmoud, M.S., *et al.*, 2011. Guaranteed-cost reliable control with regional pole placement of a power system. *J. Franklin Instit.*, **348**(5): 884-898. - http://dx.doi.org/10.1016/j.jfranklin.2011.02.013 - Takagi, T., Sugeno, M., 1983. Derivation of fuzzy control rules from human operator's control actions. IFAC Symp. on Fuzzy Information, Knowledge Representation and Decision Analysis, p.55-60. - Talaat, H.E.A., Abdennour, A., Al-Sulaiman, A.A., 2010. Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer. *Int. J. Electr. Power Energy Syst.*, **32**(7):751-759. http://dx.doi.org/10.1016/j.ijepes.2010.01.011 - Tan, W., Xu, Z., 2009. Robust analysis and design of load frequency controller for power systems. *Electr. Power Syst. Res.*, 79(5):846-853. http://dx.doi.org/10.1016/j.epsr.2008.11.005 - Zhang, Y., Zhou, Q., Sun, C.X., *et al.*, 2008. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. *IEEE Trans. Power Syst.*, **23**(3):853-858. - http://dx.doi.org/10.1109/TPWRS.2008.922249 # Appendix A: Relevant parameters of the two-area hydro-thermal-diesel power system # Appendix B: Relevant parameters of the three-area hydro-thermal power system f=60 Hz, T_{gi} =0.08 s, T_{ri} =10 s, H_i =5 s, T_{ti} =0.3 s, K_r =0.5, P_{ri} =2000 MW, T_{pi} =20 s, K_d =4.0, K_p =1.0, K_i =5.0, D_i =0.1283 p.u. MW/Hz, K_{pi} =120 Hz/p.v. MW, T_w =1 s.