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Building processing, structure, and property (PSP) relations for computational materials design is at the
heart of the Materials Genome Initiative in the era of high-throughput computational materials science.
Recent technological advancements in data acquisition and storage, microstructure characterization and
reconstruction (MCR), machine learning (ML), materials modeling and simulation, data processing,
manufacturing, and experimentation have significantly advanced researchers’ abilities in building PSP
relations and inverse material design. In this article, we examine these advancements from the perspec-
tive of design research. In particular, we introduce a data-centric approach whose fundamental aspects
fall into three categories: design representation, design evaluation, and design synthesis.
Developments in each of these aspects are guided by and benefit from domain knowledge. Hence, for
each aspect, we present a wide range of computational methods whose integration realizes data-
centric materials discovery and design.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Computational materials science provides a platform to achieve
a deeper understanding of materials behavior across different
length scales. This advancement is of particular interest to various
industrial sectors, as it enables the cost-effective design of materi-
als with engineered properties. The significance of computational
materials science is also highlighted by the Materials Genome
Initiative [1–4] and by the emergence of tools and frameworks
such as materials by design [5,6], microstructure-sensitive design
[7], and integrated computational materials engineering [8]. Since
a material’s morphology heavily affects its properties [9,10], the
central theme of these frameworks is inverse materials design,
where the link between processing, structure, and property (PSP),
also known as PSP relations, is elucidated in order to engineer
materials with unprecedented properties [5,11]. The non-
uniqueness of inverse PSP relations, while providing design flexi-
bility, challenges the forward development of PSP maps (Fig. 1(a)).

For most of the 20th century, materials science research
and development relied on the expensive and time-consuming
Edisonian approach, which involves many trials and errors. This
reliance delayed the deployment of emerging materials in com-
mercial applications. To achieve a quantum leap in materials
design, we need to shift the focus of materials research from sim-
ply explaining observed phenomena to developing scientific and
predictive models that explain and predict materials behavior with
quantitative factors that can be controlled in order to meet the
desired objectives of industrial applications. To this end, the so-
called high-throughput computational materials science [12] has
been developed (Fig. 1(b)). Here, the central concept is to first cre-
ate a massive database that stores microstructural characteristics
and properties of materials. Then, this dataset is used to train a
machine learning (ML) model that can predict (or assist in the pre-
diction of) PSP relations.

A holistic design strategy for the bi-directional traversal of PSP
relations relies on addressing some key challenges: cost-effective
processing techniques, microstructure representation and recon-
struction, dimensionality reduction, and tractable optimization
methods. The emergence of open-source materials databases
[13–17] and the recent technological advancements in ML techni-
ques [18] are accelerating our ability to address some of these chal-
lenges using a data-centric approach for materials design (Fig. 2).
From the perspective of design research, the fundamental aspects
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Fig. 1. (a) Forward and inverse PSP links in the Materials Genome Initiative is not unique; (b) data-driven materials design via high-throughput simulations and experiments.

Fig. 2. Data-centric framework for materials design. SMILES: simplified molecular-input line-entry system.
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of this approach fall into the categories of design representation,
design evaluation, and design synthesis. Each of these aspects is
guided by the knowledge gained from the PSP data stored in
databases.

� Design representation. This encompasses methods that char-
acterize the control factors in design—that is, the variables
that influence materials’ behavior. These factors depend on
the material system; hence, domain knowledge can greatly
help their identification. For example, the band gap of inor-
ganic compounds is entirely determined by the composition;
thus, composition is itself a suitable representation. As
another example, the electrical properties of polymer nano-
composites depend on composition and microstructure. Since
these two factors are high dimensional, microstructure repre-
sentation methods such as spectral density function (SDF) or
physical descriptors must be used for dimensionality
reduction.

� Design evaluation. This comprises the methodologies that are
employed to evaluate PSP relations. The chosen method heav-
ily depends on both the material and the spatiotemporal
scales at which the underlying phenomenon takes place. For
example, density functional theory (DFT) [19,20] calculations
capture atomic-level properties such as band gap; molecular
90
dynamics (MD) simulations model an ensemble of molecules
[21–23]; and continuummechanics is suitable for phenomena
occurring at higher length scales. Each of these methods
require the calibration of embedded parameters and the vali-
dation of property predictions, which is accomplished through
experimental data contained in the database. ML approaches,
trained on experimental data or simulated data, have been
widely used to build surrogate models that replace expensive
physics-based simulations.

� Design synthesis. This involves searching the design space to
identify (feasible) optimal designs that meet the targeted
properties. The choice of optimization method depends on
the nature of the design variables—whether there are qualita-
tive and quantitative design variables, the presence of uncer-
tainty or noise in property evaluations, and the computational
cost of the method. To account for manufacturing feasibility
and consistency with fundamental laws and known material
behaviors, constraints and bounds are often imposed during
optimization to ensure feasibility.

It should be noted that the aforementioned three aspects are
interrelated, as marked in Fig. 2. For example, the choice of design
representation—whether mixed variable (both qualitative or
quantitative) or quantitative only—will impact the choice of ML
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technique in design evaluation and the choice of search algorithm
in design synthesis. In this article, after first providing an overview
of the role of data resources, we will review the challenges and
state-of-the-art methods under each of these three aspects.

2. Materials data resources

Recent years have seen a rapid expansion of efforts toward
building large data resources to accelerate materials discovery
and design. The majority of such data resources are focused on
metallic material systems and computational materials data,
where software prediction tools can rapidly sweep through com-
positional space to predict specific structures and properties of
interest. Examples of these data resources can be found in a recent
perspective article [24]. We have been involved in developing a
data resource for the design of soft materials in the field of polymer
nanocomposites, called NanoMine [13,14,25] (Fig. 3). NanoMine
has in-built data curation, exploration, visualization, and analysis
capabilities, with curated data on over 2500 samples from the lit-
erature and individual laboratories. In principle, NanoMine offers a
findable, accessible, interoperable, and reusable (FAIR) platform in
which the data published in papers become directly findable and
accessible via simple search tools, with open metadata standards
that are interoperable with larger materials data registries; the
platform also allows the easy reuse of data, such as benchmarking
against new results.

At the core of developing a materials data resource is the crea-
tion of a data schema particularized for the domain of interest. The
materials vocabulary used to organize the metadata framework for
NanoMine forms part of the high-level ‘‘polymer data core” [26]
and is compatible with the indexing from other data stores such
as the materials data facility (MDF) [27,28]. Built on the MDF, we
have developed an ontology-enabled knowledge graph framework
[14] that helps NanoMine establish relationships between the data
that falls into the following six categories:

� Data resource. The data in this category are the metadata of
the source of the literature guided by Dublin core standards,
which includes the digital object identifier (DOI) of the cited
source, the authors, title, keywords, time, and source of the
publication.

� Materials. The data in this category involve material constitu-
ent information, including the filler particle, polymer matrix,
and surface treatments. The characteristics of pure matrix
and filler, such as the polymer chemical structure, molecular
weight, and particle density, can be entered along with the
compositions (i.e., volume/weight fraction).
Fig. 3. NanoMine: an online data resource for polymer nanocomposites (www.
materialsmine.org).
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� Processing. The data in this category are a sequential descrip-
tion of chemical syntheses and experimental procedures. The
current template provides three major categories: solution
processing, melt mixing, and in situ polymerization. For each
processing step, detailed information such as temperature,
pressure, and time can be entered.

� Characterization. The data in this category provide informa-
tion on the material characterization equipment, methods,
and condition used. This information includes details on com-
mon microscopic imaging (scanning electron microscopy and
transmission electron microscopy), thermal mechanical and
electrical measurement, and nanoscale spectroscopy.

� Properties. The data in this category are measured data of
material properties, including mechanical, electrical, thermal,
and volumetric properties. The property data can be in the
format of a scalar or a higher dimension such as two-
dimensional (2D) spectroscopy or three-dimensional (3D)
maps.

� Microstructure. The data in this category comprise raw
microscopic grayscale images capturing the nanophase dis-
persion state. Geometric descriptors can also be included to
describe the statistical characteristics of the microstructure.

The NanoMine ontology serves as an extensible knowledge-
representation platform for materials science and allows the tools
we develop for search, visualization, and data sharing to extend
across multiple domains and interoperate with existing standards
for scientific metadata. In addition to physical data, a collection
of modular tools (for microstructure characterization and
reconstruction (MCR) and for simulation software to model bulk
nanocomposite material response) augment the knowledge
generated by experiments. Integrating these different data sources
to create new knowledge is critical for materials design. However,
generating experimental or simulated data for the vast design space
defined by the infinite combinations of constituents, microstructure
morphology, and processing conditions is impractical. This signifies
the need for data-centric methodologies that can effectively inter-
rogate existing data and interpolate between them to support
design representation, design evaluation, and design synthesis in
discovering new high-performing materials.

3. Design representation: Microstructure characterization and
reconstruction

Due to the high dimensionality of material microstructure, in
microstructure-mediated design, microstructure representation is
critical to ensure tractable design strategies. A good microstructure
representation will r provide significant dimension reduction;
s embody salient morphological features; t be physically mean-
ingful in a way that can be easily mapped to the processing condi-
tions; and u provide a computationally efficient reconstruction
procedure so that statistically equivalent microstructures can be
created for assessing structure–property relations and quantifying
the uncertainty associated with materials heterogeneity.

MCR, coupledwithML andmaterialsmodeling and simulation, is
an important component in discovering PSP relations and inverse
material design in the era of high-throughput computational mate-
rials science. Given the vast diversity ofmicrostructures observed in
engineered materials, developing an MCR technique that is univer-
sally applicable is challenging. In our review article [29], we provide
a comprehensive review of awide range ofMCR techniques and ela-
borate on their algorithmic details, their computational costs, and
how they fit into the PSP mapping problems. Therein, interested
readers may find detailed descriptions of multiple categories of
MCRmethods relying on statistical functions (such as n-point corre-
lation functions), physical descriptors, SDF, texture synthesis, and
supervised/unsupervised learning.

http://www.materialsmine.org/
http://www.materialsmine.org/
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Sample MCR techniques applied to heterogeneous microstruc-
tures are illustrated in Fig. 4. Perhaps the most well-known MCR
method is based on spatial correlation functions (Fig. 4(b))
[30,31], which provide probabilistic representations of the mor-
phology but rely on a computationally intensive simulated anneal-
ing (SA) algorithm for reconstruction. The descriptor-based
method (Fig. 4(a)) [32,33] represents microstructures using a small
set of uncorrelated descriptors that embody significant microstruc-
tural details. Reconstruction involves a hierarchical optimization
strategy to match the descriptors of reconstructed microstructures
to targeted values. However, the usage of regular geometrical fea-
tures and the assumption of ellipsoidal clusters deter its applica-
tion for microstructures with irregular geometries. Other versions
of descriptor-based MCR have been reported in the literature, as
the choice of descriptor varies across materials systems and
depends on the property of interest. The descriptor of nearest
neighbor plays an important role in transport processes in particu-
late heterogeneous systems [9], microstructural evolution during
recrystallization [34], particle coarsening [35], and liquid-phase
sintering [34]. In fiber composites, the volume fraction (VF), size,
shape, and spatial distributions of the fibers affect the mechanical
properties of the composite, such as the Young’s modulus, ultimate
Fig. 4. Representative MCR techniques. (a) Physical descriptors; (b) statistical function
limited-memory quasi-Newton code for bound-constrained optimization; VGG-19: Visua
trained on more than a million images from the ImageNet database.
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strength, and fracture toughness [36–42]. In crystalline structures,
intergranular corrosion is sensitive to grain boundaries [43], so
these boundaries must be used as descriptors for accurate design
representation.

ML and artificial intelligence (AI) techniques, with their super-
ior capability to learn and reconstruct complex features from iso-
tropic/anisotropic microstructures, have gained popularity as a
reconstruction tool. Applications of instance-based learning using
support vector machines [44], supervised learning (Fig. 4(c))
[45,46], and transfer learning (Fig. 4(d)) [18,47] have shown good
reconstruction accuracy for complex materials morphology. Trans-
fer learning-based methods, in particular, reconstruct statistically
equivalent microstructures from only one given target microstruc-
ture by leveraging a pre-trained deep convolutional neural net-
work (CNN), Visual Geometry Group 19 (VGG-19) [48], and a loss
function that measures the statistical difference between the origi-
nal and the reconstructed microstructures. Knowledge obtained in
the proceeding model-pruning process is then leveraged in the
development of a structure–property predictive model to deter-
mine the network architecture and initialization conditions. While
deep learning-based approaches are powerful for handling
complex microstructure morphology, these methods often do not
s; (c) supervised learning; (d) deep convolutional network; (e) SDF. L-BFGS-B: a
l Geometry Group 19, a convolutional neural network (CNN) that is 19 layers deep,
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provide the physical meaning in microstructure characterization,
which hinders their use in materials design. Deep learning meth-
ods such as convolutional deep belief networks [49] and generative
adversarial networks (GANs) [50] are being studied in ongoing
research to provide a low-dimensional microstructure characteri-
zation that could be used as design variables.

The SDF (Fig. 4(e)) [9,51–55], a frequency domain microstruc-
ture representation, has received significant attention for its
capability to provide low-dimensional and physically meaningful
descriptions of quasi-randommaterial systems with complex mor-
phology. For isotropic materials, SDF is a one-dimensional (1D)
function of spatial frequency and represents the spatial correla-
tions in the frequency domain. Although information contained
in the SDF is equivalent to a two-point autocorrelation function,
Yu et al. [51] have shown that the SDF provides a more convenient
representation that can be easily and sensibly mapped to both pro-
cessing conditions and properties. However, the computational
cost and time for reconstructing high-resolution 3D microstruc-
tures using existing approaches [56–58] remains a challenge.
Moreover, while existing SDF techniques are restricted to isotropic
material systems, anisotropy is highly desired in some material
systems, especially where the performance is a manifestation of
an underlying transport phenomenon, such as in organic photovol-
taic cells (OPVCs), batteries, thermoelectric devices, and mem-
branes for water filtration. In our recent work [59] (Fig. 5), an
anisotropic microstructure design strategy that leverages the SDF
for the rapid reconstruction of high-resolution, two-phase, isotro-
pic or anisotropic microstructures in 2D and 3D is developed that
quantifies anisotropy via a dimensionless scalar variable termed
the anisotropy index. Application to an active layer design case
study for bulk heterojunction OPVCs shows that an optimized
design with strong anisotropy outperforms isotropic active-layer
designs. The physics-aware SDF approach also offers significant
dimension reduction in design evaluations for understanding PSP
links.
Fig. 5. (a) Schematic representation of OPVCs. Inset shows excitons (orange)
dissociating into protons (blue) and electrons (green), which travel to the anode and
cathode, respectively. (b–d) Quantifying anisotropy for microstructures with
elliptical SDF using anisotropy index a.
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4. Design evaluation: ML of PSP relations

In physics-based materials design, ML techniques have become
popular surrogates for costly PSP simulators. Recent review articles
on using ML and AI techniques in materials design can be found for
both molecular and polymer systems [60] and metallic systems
[61,62]. As shown in Fig. 6, while a wide range of statistical models
such as neural networks (NNs), random forests (RFs), trees, and
Gaussian processes (GPs) [63] may be considered to create surro-
gate models, feature identification plays a critical role in obtaining
a trustworthy statistical model with good predictive capability.

The ‘‘curse of dimensionality” (i.e., the large number of descrip-
tors or parameters) makes it extremely challenging to build predic-
tive models with moderate sample data sizes. Hence, a combined
feature-selection and feature-extraction approach is often used
for dimension reduction by integrating these ML methods with
materials science domain knowledge. In general, the objective of
feature selection is threefold: improving predictive performance,
providing more cost-effective predictors, and facilitating the dis-
covery of underlying probabilistic principles of data generation
[64]. Variable ranking is one of the most common techniques for
feature selection, which enables the identification of the most
informative features for building parsimonious predictive models.
We have developed a range of techniques for microstructure fea-
ture selection. For example, Xu et al. [65] employed a two-step
feature-selection process using descriptor pairwise correlation
analysis (unsupervised learning based only on images) and the
relief for regression (RReliefF) variable ranking approach [66]
(supervised learning based on structure–property relations) to
select the physical descriptors that best control the damping prop-
erty of polymer composites. Exploratory factor analysis [67] is
another technique for identifying the important features by group-
ing the correlated descriptors together to build a set of latent com-
mon factors. We employed factor analysis into a structural
equation-modeling approach for the design of dielectric polymer
composites [39]. In short, with feature selection, redundant statisti-
cal features can be dropped before further analyses are conducted.

Different from feature selection, feature extraction transforms
the feature space into a lower dimensional one in which the phys-
ical interpretations are diminished. While not preserving as many
physical interpretations as feature-selection methods do, feature-
extraction techniques are advantageous in lowering the dimen-
sionality of the space and are more easily trained to achieve a
higher predictive accuracy [68,69]. Principle component analysis
(PCA) is perhaps the most well-known linear dimensionality
reduction method that can convert the high-dimensional feature
space of 3D microstructure images to lower dimensional approxi-
mations [70]. It has also been demonstrated that PCA can effec-
tively reduce the dimensionality of a two-point correlation
function (commonly used in microstructure characterization) to
only a few parameters [71–73]. Recent years have seen the rapid
utilization of nonlinear embedding methods for feature extraction
in materials design due to advances in ML techniques. One set is
the bottom-up approach, in which it is assumed that a nonlinear
manifold (embedded in the original feature space) governs the data
distribution [74,75]. The second major set is the top–down
approach, which attempts to preserve the geometric relations at
all scales [76].

A wide range of ML techniques can be chosen for building a sta-
tistical model considering multiple factors, such as r the nature of
physical behavior (nonlinearity and irregularity); s the type of
input variables (qualitative, quantitative, or mixed); t the
response of interest (continuous or classification); u the data
source (an experiment with noise, deterministic simulation, or sto-
chastic simulation); and v the amount of data (big or small data).



Fig. 6. Feature identification and ML in materials engineering. PCA: principle component analysis.

Fig. 7. A 1D example of a GP model fitted to the collected data of f ð�Þ.
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Due to the need to understand causal relations in PSP mappings,
supervised learning methods are commonly used. While linear
regression is the most straightforward approach to apply and inter-
pret the results, methods such as decision trees [77], k-nearest
neighbors (k-NNs) [78], support vector machines [79,80], and RFs
[81] are better suited for more complex behavior and mixed-
variable inputs; they are also flexible for creating both regression
and classification models.

Recent research at the interface of ML and materials engineer-
ing has exponentially grown as big materials data are becoming
increasingly available. NNs are networks connected by layers of
artificial neurons, mimicking a human brain. A single neuron out-
puts weighted inputs through a so-called activation function. Deep
neural networks (DNNs) are special NNs with more than one hid-
den layer that have superior learning power. For inorganic materi-
als, crystal graph CNNs [82] have been used to model highly
nonlinear behaviors using DFT-calculated thermodynamic stability
entries taken from the Open Quantum Materials Database (OQMD)
for accelerated materials discovery [83]. For nanocomposites, we
have demonstrated that, while CNNs provide the capability of
microstructure reconstruction and structure–property learning
[47], GANs can be trained to learn the mapping between latent
variables (LVs) and microstructures [50]. Thereafter, the low-
dimensional LVs serve as design variables, and a Bayesian optimi-
zation (BO) framework can be applied to obtain microstructures
with the desired material properties. For organic materials, the
simplified molecular-input line-entry system (SMILES) [84] pro-
vides a meaningful representation for large molecules and has
been used to design synthetic molecules using variational autoen-
coders [85] and reinforcement learning [86].

In the presence of small data, especially those from determinis-
tic simulations such as DFT that require hours and days to compute
one materials design, GPs provide a very viable approach. Fig. 7 is a
1D example of a GP model fitted to the collected data of f ð�Þ. At
each input x, the output f ðxÞ is regarded as a normally distributed
random variable, and the GP model predicts its mean and variance.
The 95% prediction interval in the figure reflects the confidence
bounds of the prediction [87,88].

Standard GP methods were developed under the premise that
all input variables are quantitative, which does not hold in materi-
als systems that involve both qualitative and quantitative design
variables representing material compositions, microstructure mor-
phology, and processing conditions. We recently proposed a latent
variable Gaussian process (LVGP) [89] modeling method that maps
the levels of the qualitative factor(s) to a set of numerical values for
some underlying latent unobservable quantitative variable(s). In
other words, the qualitative variables are ‘‘converted” to quantita-
tive ones, and traditional GPs modeling can then be applied to
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obtain the desired model. The LV mapping of the qualitative factors
provides an inherent ordering and structure for the levels of the
factor(s), which leads to substantial insight into the effects of the
qualitative factors. Unlike most supervised ML methods, LVGP does
not require hand-crafted features to describe qualitative variables.
Rather, it learns the underlying ‘‘LVs” (Z) influencing response (y)
by maximizing the likelihood function.

Alleviating the need for feature engineering makes LVGP attrac-
tive for materials design applications. As conceptually illustrated in
Fig. 8, the three qualitative levels of tj 2 l1; l2; l3f g of atom M in
the family of M2AX phases are associated with points in the under-
lying high-dimensional space of v1; v2; . . .f g, defined by physical
parameters such as atomic radius, ionization energy, and electron
affinities. LVGP provides a nonlinear manifold mapping
z tð Þ ¼ gðv1 tð Þ; v2 tð Þ; . . . from v to the latent space Z, and the dis-
tances between the three points indicate the differences between
the three levels with respect to their impact on the property of
interest. The mixed-variable LVGP approach has been tested and
validated for a wide range of microstructural systems such as con-
current materials selection and microstructure optimization for
optimizing the light absorption of a quasi-random solar cell [90],
a combinatorial search of material constitutes for optimal hybrid
organic–inorganic perovskite design [90], and concurrent composi-
tion and microstructure design of nanodielectric materials [91].
Materials discovery and optimization are accomplished through
the integration of the LVGP approach with BO for design synthesis,
which is introduced next.

5. Design synthesis: Goal-oriented BO

Materials discovery often takes years and decades, due to sev-
eral challenges associated with design synthesis: r Even though



Fig. 8. Qualitative material composition selection modeled using mapping from the true high-dimensional underlying quantitative variables to the 2D LVs Z.
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large datasets become available, the properties of known materials
are far from the desired targets. The ML models created using the
existing data are not capable of predicting behavior in the ‘‘extra-
polated” regions. s Vast combinations of candidate designs exist.
In the design of organic materials, such as in polymer nanocompo-
site design, there are numerous choices of material constituents
(e.g., the types of filler and matrix) and processing conditions
(e.g., the type of surface treatment); each combination follows
drastically different physical mechanisms with significant impact
on the overall properties. In the design of inorganic materials such
as microelectronics, the possible options of atomic structure–com-
position variable spaces are in the order of millions, defined by dif-
ferent structure prototypes (crystal graphs), composition (choice
of chemistry elements), and stoichiometry (ratio of elements).
t The existence of both quantitative and qualitative material
design variables results in multiple disjointed regions in the prop-
erty/performance space. The combinatorial nature poses additional
challenges in materials modeling and the search for an optimal
solution.

During the past half decade, the BO approach has emerged as
the most effective approach to materials design synthesis [92–
95], due to its capability of locating the global optima for highly
nonlinear functions within tens to hundreds of objective-function
(i.e., material property) evaluations. Starting from a small dataset,
BO relies on an adaptive sampling technique to approach the global
optimum efficiently—an attractive feature for materials design.
Fig. 9 shows our proposed on-demand goal-driven data augmenta-
tion framework, integrating curated material databases with mate-
rial property simulations and ML. The framework is initiated from
a database of curated experimental and simulated data describing
material properties with appropriate attributes. Based on PSP rela-
tionships, one identifies a subset of attributes that are known to
Fig. 9. The BO approach treats the existing dataset as prior knowledge, chooses new samp
to capture PSP relations for optimization.
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influence material properties and act as design variables in BO.
These attributes may be quantitative (e.g., microstructure descrip-
tors or interphase descriptors) or qualitative (e.g., type of filler,
polymer, or a combination of both).

Using the predictions and uncertainty quantification of the ML
model, Bayesian inference determines the design that shows the
most ‘‘potential” for improvement in terms of material property.
There are several metrics—commonly known as acquisition func-
tions—for evaluating ‘‘potential” improvement. The acquisition
function strikes a balance between exploration (reducing predic-
tion uncertainty) and exploitation (optimizing the design objec-
tive) of the design space. The most commonly used acquisition
functions are expected improvement (EI) [96] and probability of
improvement [97]. Once a promising design is identified by the
acquisition function, its corresponding material property is evalu-
ated using ‘‘on-demand” experiments, simulations, or both. The
nature of simulations depends on the material system and prop-
erty under consideration, often requiring the calibration of para-
meters. For example, finite-element simulations for the
prediction of dielectric properties in nanocomposites require the
calibration of interphase-shifting parameters [98]. Once the prop-
erty evaluation is complete, the design is added to the database
and the above steps are repeated. The termination criterion is
usually the maximum number of iterations, which depends on
the cost and time required for the simulations or experiments.

By integrating the mixed-variable LVGP model introduced in
Section 4 and the BO framework, we have successfully applied
the BO approach to designs of organic, inorganic, and hybrid mate-
rials. For example, in concurrent composition and microstructure
design [91], the design of electrically insulating nanocomposites
is cast as a multicriteria optimization problem with the goal of
maximizing the dielectric breakdown strength while minimizing
les, and builds ML models using curated and new experimental and simulation data
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the dielectric permittivity and dielectric loss (Fig. 10). The SDF is
selected as the microstructure representation, with the underlying
function type identified based on experimental images. Within
tens of simulations and using the multi-response LVGP approach,
our method identifies a diverse set of designs on the Pareto frontier
indicating the tradeoff between dielectric properties. This method
was shown to be much more efficient than using genetic
algorithms.

The generality of BO using LVGP is further exemplified by a
combinatorial search for an ABX3 hybrid organic–inorganic perovs-
kite with optimal binding energy to solvents [90]. The design space
consists of three choices each for the A and X sites and eight
choices for the type of solvent, while the B site remains unchanged.
In addition, the three X’s can be chosen independently. Out of the
648 possible ABX3-solvent combinations, 240 are stable and con-
stitute the search space for BO. Fig. 11(a) shows that BO converges
to the optimal combination faster with LVGP, as compared with the
multiplicative covariance (MC) [99,100] GP model commonly used
for qualitative variables hitherto. Furthermore, the latent space
estimated by LVGP provides insights into the nature of the levels
for each qualitative variable. The positioning of solvent choice 1
and 7 far from the others in Fig. 11(b) indicates that their effects
on the binding energy are distinct. This insight is validated by ana-
lyzing the distribution of binding energies in Fig. 11(c), which
shows that combinations with solvents 1 and 7 result in higher
binding energies. Several materials design applications can be cast
as a combinatorial optimization problem. For example, we recently
demonstrated that the search for functional electronic materials
Fig. 10. Concurrent composition and microstructure design for nanocomposites. (a) SDF
using the VF. (b) Multicriteria mixed-variable BO using LVGP identifies the Pareto frontier
samples (P stands for polymer type; S stands for type of surface treatment. PMMA: poly

Fig. 11. (a) Comparing the convergence BO with the EI acquisition function for MC-EI and
levels. (c) Distribution of binding energy categorized by ‘‘solvent type.”
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design with metal–insulator transitions (MITs) [101] can be expe-
dited with LVGP-based multicriteria BO. These findings indicate
that integrating mixed-variable LVGP models with BO is an effec-
tive approach for design synthesis in the design of engineered
material systems.

6. Conclusions

Here, we presented a data-centric approach for materials design
that integrates state-of-the-art computational techniques for
microstructural analysis and design. These techniques fall into
the categories of design representation, design evaluation, and
design synthesis. Realization of this approach is supported by the
creation of materials data hubs such as NanoMine, where a wide
range of data resources and tools are developed for microstructural
analysis and optimal materials design. As we have illustrated, this
development consists of the systematic integration of image pre-
processing, microstructure characterization, reconstruction,
dimension reduction, ML of PSP relations, and multi-objective
optimization.

A key question for achieving a seamless integration of design
representation, design evaluation, and design synthesis is: What
is the proper microstructure representation for the materials sys-
tems of interest? We presented a range of microstructure repre-
sentation techniques based on correlation functions, physical
descriptors, SDF, supervised learning, and deep learning. While
the merits of these different techniques vary from one system to
another, it is evident that stochasticity plays a critical role and
characterizes nanoparticle dispersion using parameter h and nanoparticles loading
displaying significant improvement with respect to randomly selected initialization
methyl methacrylate; PS: polystyrene).

the LV-EI GP. (b) Latent space for the ‘‘solvent type” categorical variable with eight
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must be considered in materials representation and property
predictions.

For design evaluation, ML approaches have played an increas-
ingly important role in knowledge discovery and in building surro-
gate models that replace physics-based simulations. Since big data
and lack of data co-exist in materials informatics, care must be
exercised to ensure that the selected ML technique, such as NN,
RF, or GP, is consistent with the data availability. As more materials
data are being generated, deep learning is gaining popularity for
image-based materials informatics, in which interpretation of the
learned microstructural features relies on developing explainable
deep models.

Finally, ML should not be viewed as an isolated component in
materials discovery. For example, its integration with
information-theoretic approaches such as BO can provide a signifi-
cant speedup. As materials discovery is combinatorial in nature, it
requires mixed-variable models such as LVGP that can handle both
qualitative and quantitative design variables. These models pro-
vide quantitative measures of ‘‘distances” for different materials
concepts based on their influence on the desired material proper-
ties. More research is needed to extend the current methods to
handle high-dimensional materials design problems with millions
or billions of combinations. The same information-theoretic frame-
work can be extended to guide the design of batch samples and
high-throughput experiments.
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