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Machine Learning Turbocharges Structural Biology
Fig. 1. These AlphaFold-generated schematics show the predicted structu
protein Q9VZS7 from the fruit fly, Drosophila melanogaster and (b) protein
from the bacterium Escherichia coli. Both the fly and bacterium are wid
model organisms for basic research. These examples are among those
proteomes of 21 such organisms whose predicted structures were initially
in AlphaFold DB. The coloring represents AlphaFold’s confidence measur
predicted positions of the amino acids that make up the protein, from d
(high confidence) through light blue (medium), yellow (low), and orange (v
Credit: DeepMind/AlphaFold (public domain).
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On 28 January 2022, DeepMind Technologies announced the
addition of the proteomes of 27 organisms to its AlphaFold Protein
Structures Database (AlphaFold DB), a free online resource for sci-
entists [1]. DeepMind, the London-based, artificial intelligence
(AI)-focused subsidiary of Google’s parent company, Alphabet,
selected these proteomes in alignment with the priorities of the
World Health Organization. That is, they published the predicted
structures of proteins in organisms that cause neglected tropical
diseases, such as leprosy and schistosomiasis, and others of great
concern due to antimicrobial resistance. Announcing the additions,
the DeepMind team said: ‘‘We hope this release can help accelerate
research and support those already working tirelessly to eradicate
these conditions” [1].

The announcement followed a slew of prior additions to Alpha-
Fold DB since its launch in July 2021 [2]. DeepMind had initially
made available structural predictions for proteins from 21 model
organisms (Fig. 1) [3], including human, mouse, fruit fly, important
crops such as maize, Asian rice, soybean and yeast, pathogens such
as Escherichia coli, Candida albicans, and disease-causing parasites
such as Trypanosoma cruzi (Chagas disease) and Leishmania infan-
tum (leishmaniasis). More additions quickly followed.

These rapid developments indicate how the field of structural
biology is being transformed by machine-learning tools that allow
scientists to predict the shape of proteins with unprecedented
accuracy, based purely on their genetic sequences. Predicting the
structure of proteins from their genetic sequences had been a
‘‘grand challenge” in biology for five decades [4,5]. It is important
because it is often the shape that a protein folds into, and not
the genetic sequence itself, that reveals its function. Predicting
structures with confidence opens possibilities from designing
highly targeted drug molecules to creating crops more resistant
to climate change.

It was in late 2020 that DeepMind’s AlphaFold system displayed
stunning accuracy [4,5], winning an international biennial experi-
ment called Critical Assessment of Protein Structure Prediction
(CASP), in which teams compete to predict the structures of pro-
teins. In many cases, AlphaFold’s Protein structure predictions
were indistinguishable from experimentally determined structures
[4,5].

Back then, no one knew how much the AlphaFold team would
make public about their system. That changed in July 2021, when
DeepMind published two landmark papers in the journal Nature.
The first, on 15 July, described in detail how AlphaFold ‘‘greatly
improves the accuracy of structure prediction by incorporating
novel neural network architectures and training procedures based
on the evolutionary, physical and geometric constraints of protein
structures” [6]. The publication coincided with the open-source
release of the AlphaFold code [2], which enabled scientists all over
the world to use the system.

The second paper, on 22 July, announced that DeepMind had
made available structural predictions for 98.5% of proteins in the
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entire human proteome. Less than one-fifth of human protein
structures have been discovered through experimental determina-
tion [7]. That same day, DeepMind—in partnership with the
European Bioinformatics Institute (EBI), part of the European
Molecular Biology Laboratory (EMBL) group—announced the
launch of AlphaFold DB [8]. The database initially contained over
360 000 predicted protein structures, from the 21 model organism
proteomes previously mentioned.

Then in December 2021, DeepMind and EMBL-EBI announced
that they had expanded AlphaFold DB to cover protein sequences
held in the UniProtKB/Swiss-Prot database—a high-quality data-
base of manually-annotated records drawn from the scientific lit-
erature [9]. This took AlphaFold DB to over 800000 predicted
protein structures. A planned further update in 2022 will take
AlphaFold DB to over 100 million protein structures [3].

The impact of all this in the structural biology world has been
‘‘really extraordinary,” said CASP co-founder and organizer John
Moult, professor and fellow at the University of Maryland’s Insti-
tute for Bioscience and Biotechnology Research in Rockville, MD,
USA. ‘‘I have never seen such a rapid uptake of a piece of software.
It is not much of an exaggeration to say that all structural biologists
are now using either AlphaFold DB or their own installed versions
of the software.”

AlphaFold is ‘‘enormously convenient” for structural biologists,
said Jinbo Xu, professor of computational biology at the Univer-
sity of Chicago’s Toyota Technological Institute in Chicago, IL,
USA. ‘‘However, the AlphaFold software tool itself is more impor-
tant and represents a breakthrough,” said Xu, who developed
RaptorX, another protein structure predictor and former CASP
winner [10].

Richard Wheeler, a principal investigator at the University of
Oxford, UK, agrees. Wheeler’s lab explores the fundamental cell
biology of the Leishmania and Trypanosoma parasites, both single-
celled organisms from the Discoba supergroup of eukaryotes. ‘‘I
have been hoping for something like AlphaFold for a very long
time,” he said. ‘‘I was super excited because, working with
neglected tropical pathogens, we do not have the amazing data-
bases of experimentally determined data that exist for humans,
or for model organisms like yeast.”

However, Wheeler was immediately concerned that the spar-
sity of genetic data and knowledge of less well studied organisms
like Trypanosoma cruzi (Fig. 2) would be a problem for the
AlphaFold database. ‘‘The protein-sequence databases they were
using to do the predictions were likely not very good for Discoba,”
Fig. 2. This photomicrograph of a blood smear specimen reveals two Trypanosoma
cruzi trypomastigotes, single-celled flagellated parasites that cause Chagas disease.
DeepMind has released predicted structures of proteins in the proteomes of this
parasite and other pathogens that cause neglected tropical diseases, which could
help accelerate the development of more effective therapies. Credit: CDC/Myron G.
Schultz (public domain).
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he said. By comprehensively gathering the latest available protein
sequence data for Discoba species and feeding it to an implemen-
tation of AlphaFold himself, Wheeler obtained significant improve-
ments on many structural predictions in AlphaFold DB and
subsequently made his enhancements freely available to the para-
sitology community [11].

Such work has important implications for other structural biol-
ogists using AlphaFold DB to study neglected organisms, Wheeler
said. ‘‘For about one-third of Discoba proteins, I saw no improve-
ment over AlphaFold DB, but for about two-thirds I saw anything
from noticeable improvements to first high-confidence structural
predictions,” he said. ‘‘AlphaFold is profoundly amazing.”

AlphaFold is not the only open-source prediction tool newly
available, however. RoseTTaFold, developed by professor of bio-
chemistry David Baker and colleagues at the Institute for Protein
Design at the University of Washington in Seattle, WA, USA, was
made available shortly after AlphaFold. RosseTTaFold produces
predictions approaching the accuracy of AlphaFold, but requires
markedly less computer power to run, so is faster [12].

While such tools are transforming protein structure prediction,
headway is also being made in the less-crowded field of ribonu-
cleic acid (RNA) structure prediction. A nucleic acid like deoxyri-
bonucleic acid (DNA), but single stranded and with differing
functions, RNA also plays a key role in cellular physiology. Various
types of RNA perform myriad biological tasks, including messenger
RNA (mRNA) that translates the information from DNA into pro-
teins (Fig. 3).

Predicting the structure that a strand of RNA will fold into,
based only on its genetic sequence, is a machine-learning challenge
like the protein folding challenge, but with far fewer experimen-
tally determined RNA structures to train machine learning models
on; the tally of confirmed RNA structures available to science is
less than one-hundredth that of proteins [14]. Nevertheless,
researchers at Stanford University in Stanford, CA, USA, reported
substantial progress in this area last year with their Atomic
Rotationally Equivariant Scorer (ARES) system.

The Stanford researchers trained ARES using a machine learning
approach with data comprised of the structural configurations of
just 18 RNA molecules. Unlike AlphaFold’s training on proteins,
the ARES training incorporated no domain-specific information
about how RNA molecules fold or behave but used merely the
relative coordinates of the atoms in the RNA molecules. When
given the genetic sequence of an RNA molecule with an unknown
(to ARES) structure, the system uses an open-source RNA-
Fig. 3. While the DNA sequences of protein-coding genes are transcribed to mRNA,
which is then translated into functional proteins, RNA-coding genes are directly
transcribed into functional non-coding RNA (ncRNA). Understanding the folded
structures of RNA, like understanding those of proteins, is important to under-
standing how these molecules function in both health and disease. Credit: Thomas
Shafee (CC BY 4.0).
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modelling tool called Rosetta FARFAR2 [13] to generate more than
1500 candidate structures for that RNA molecule. Based on its
training, it then picks the candidate it deems closest to reality.
ARES outperformed competing structure-prediction methods,
according to a benchmarking of the predicted models in RNA-
Puzzles, a CASP-like, blind RNA structure prediction challenge.
The team published their results in Science in August 2021 [14].

‘‘In structural biology, you can think of the atom as a fundamen-
tal machine-learning data type,” said first author on the paper
Raphael Townshend, who left Stanford University to become foun-
der and chief executive officer of Atomic AI, a San Francisco-based
biotech startup focused on using machine learning approaches to
design newmolecules and medicines. ‘‘We adapted machine learn-
ing models that we had successfully used in the protein space and
applied them in the RNA space. And it worked beautifully,”
Townshend said. ‘‘It was a nice proof of the generalizability of
machine learning.”

ARES represents an improvement on existing RNA-structure
prediction systems, but as professor of chemistry at the University
of North Carolina at Chapel Hill. Weeks noted in a Perspective piece
accompanying the Science article: ‘‘ARES is still short of the level
consistent with atomic resolution or sufficient to guide identifica-
tion of key functional sites or drug discovery efforts” [15].

Townshend, who had previously worked at DeepMind on the
AlphaFold team, acknowledged this point. ‘‘The ARES network is
the most accurate in the world, but it is only the first step on the
road to rational drug discovery,” he said. ‘‘However, it can immedi-
ately be used as a powerful screening tool, in conjunction with
experiments.” Townshend said he wants to do for RNA what has
been done for proteins—provide a dramatic increase in accuracy
over just a few years, powered by AI. It remains to be seen, how-
ever, whether the models can achieve such accuracy without incor-
porating domain-specific information about how RNA molecules
behave.

Regardless, the success in protein structure prediction—and the
growing arsenal of open-source tools—has been a boon for the RNA
folding challenge. CASP15, which begins in May 2022, will expand
its focus to include more structure prediction for RNA molecules.
‘‘We are adapting in accordance with the new excitements, as it
were, and working with the RNA Puzzles team to bring in a bigger
audience,” said Moult. ‘‘Protein people are interested in moving
into the RNA arena as well.”
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CASP15 will also increase its emphasis on predicting the struc-
tures of protein complexes. This is where the field is heading, said
Xu, because proteins do not exist in isolation. ‘‘Proteins fashion
themselves by interacting with other proteins and molecules, and
I would say this is even more important than predicting the struc-
ture of single proteins. It is a fundamental problem with tremen-
dous application in industry, particularly in drug design.”
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