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1. Overview

The human brain is a highly dynamic system with time-varying
neural activity and rapidly changing neural integration [1-3].
Research using high-temporal-resolution imaging techniques
(such as electroencephalography, EEG) has identified reoccurring
microstates (by characterizing changes in the power of brain
activity) [4,5], which are related to spontaneous thoughts and
mental processes [6]. Functional magnetic resonance imaging
(fMRI) is a technique that measures brain activity by detecting
brain changes associated with blood flow. fMRI has relatively low
temporal resolution (i.e., the sampling rate is usually around 0.5),
and most previous fMRI analyses employed the static functional
connectivity (sFC) between regions of interest, or its independent
component analysis (ICA) analog [7], the static functional network
connectivity (SFNC) between intrinsic connectivity networks
[8-10], in which the potential transient dynamics in brain
integrations were not evaluated. Emerging evidence suggests that
characterizing the dynamic functional connectivity (dFC) and the
dynamic functional network connectivity (dFNC) may advance
our understanding of how large-scale functional brain organization
changes to support different fundamental functions and behavior,
although there are still limitations on the analysis techniques
and interpretations [11-17].

To date, sliding window approaches are the most commonly
used strategy to characterize dFC from resting-state data [2],
although many other methods have been applied [18-21]. Based
on the sliding windowed functional connectivity (FC) patterns, it
is possible to use clustering and decomposition methods to iden-
tify the highly replicable, transient connectivity patterns. The Mind
Research Network (MRN) developed a dFNC analysis framework
that incorporates different methods including clustering and
decomposition (spatial and temporal ICA) to extract connectivity
states from sliding-window-based dynamic patterns [1,12,22]. This
framework comprises two analysis strategies: hard clustering state
(HCS) analysis and fuzzy meta-state (FMS) analysis [1,23-25]. The
HCS analysis is capable of assessing reoccurred discrete functional
network connectivity (FNC) states. The basic idea of HCS analysis is
the assumption that a resting-state functional brain network
would vary among different brain states with distinct FNC patterns
during the scan time. The FMS analysis is used to compute high-
level state-space metrics with the hypothesis that a resting-state
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functional brain network may be formed by overlapping different
FNC patterns. The details of the dFNC analysis framework are
provided in Fig. 1. During the past few years, an increasing number
of studies have applied these two methods to different fMRI
datasets and have identified significant and interesting dynamic
patterns in brain connectivity, which provide greater insight into
fundamental properties of the functional brain network.

2. Critical issues
2.1. Window size

A key issue of the dFNC analysis framework is how to select an
appropriate window size for the optimal estimation of real
fluctuations in the resting-state dFNC. Generally, the window
should not be too large to over smooth out valuable dFNC
variations and not too small to introduce spurious dynamics from
the estimation. Studies have suggested that window size ranging
from 30 to 60s can provide a robust estimation of the dynamic
fluctuations in resting-state dFNC [1,2,26]. However, some studies
also challenging that such a short window size cannot capture real
FNC fluctuations [27]. Also, a fixed window size was usually used
for the estimation of dFNC across the whole scan. Considering that
the rest brain might enter into different mental states with
different length of time (for example, functional states identified
by the dFNC analysis framework can have significantly different
mean dwell time and occurrence rate), a variable window size
would be better for capturing the transient dynamics. In statistics,
the estimation of the optimal window size at each time point is not
trivial because it stems from the fundamental bias-variance trade-
off problem. Fu et al. [28] have introduced a local polynomial
regression (LPR) method to estimate the dFC between brain
regions. This method is capable of choosing different optimal
window size for each time by minimizing the mean square error
locally. They applied this novel method into a task-related fMRI
dataset and successfully detected interesting transient dynamic
patterns in FC. Another alternative to the fixed window size is
the dynamic connectivity regression (DCR) method [29]. Unlike
the sliding window approach, this method estimates the temporal
change point and estimate the functional relationships between
brain regions, for data in the temporal partition that falls between
pairs of change points [29].
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Fig. 1. Summary of the dFNC analysis framework. (a) Step 1: Perform group ICA on entire dataset and back-reconstruct individual spatial maps and time courses. Identify the
target components as resting-state networks (RSNs). (b) Step 2: Assessment of inter-RSNs dFNC. Calculate time-varying covariance matrices between RSNs for each subject
using a sliding window approach. (c) Step 3: Group-wise state estimation and characterization. Conduct hard clustering and fuzzy clustering on covariance estimates. (d) Step
4: Calculate group-wise state measures and conduct statistical analysis (such as inter-group replicability analysis) based on the clustering results.

2.2. Physiological noise and non-stationary brain activity

Interpretation of the observed dFNC patterns is also a challeng-
ing problem. FNC dynamics can be due to the low signal-to-noise
ratio (SNR) at each time window [2]. Previous fMRI datasets
generally have repetition time (TR) around 2s. Assuming that
one applies the dFNC analysis framework with window size around
30 to 60 s on an fMRI dataset with TR = 2 s, the dFNC are estimated
based on relatively few time points (around 15-30 time points)
and thus the results are very sensitive to noise. Nowadays, with
the development of new technologies, increasing datasets are
scanned with shorter TRs and have higher SNR levels. The human
connectome project (HCP) is a consortium of sites who aims to
map “human brain circuitry in healthy adults using cutting-edge
methods of noninvasive neuroimaging”.' It provides an open source
dataset with a high temporal resolution (TR = 0.72 s) which includes
more 1000 healthy subjects. Variations in the magnitudes and
variance of the blood-oxygen-level-dependent (BOLD) signals also
influence the estimation of resting-state dFNC [30,31]. Previous
studies have shown that the BOLD signals may be non-stationary
with time-varying properties [32,33]. Such time-varying properties
can be a consequence of changing levels of SNR, which might further
result in the fluctuations of dFNC estimated using a sliding window
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approach. A recent study introduced an analysis framework based on
the sliding window approach for investigating the relationship
between the dynamics in brain activity and the dynamics in dFNC
[30]. They found that the amplitudes of low-frequency fluctuations
(ALFF) of brain networks co-vary with the dFNC across time during
the resting-state. Other sources of noise in fMRI, such as scanner
drift, cardiac pulsation, and head motion, might also cause non-
neural fluctuations in dFNC. Great effort has been made to reduce
these non-neural contributions to the brain signals so as to
maximize estimated neural-origin dynamics. For example, in our
previous studies using the dFNC analysis framework, three head
motion correction steps were included. First, during the pre-processing,
the fMRI data are head motion corrected using the statistical
parametric mapping (SPM) toolbox and six head motion parameters
are estimated. Second, after identifying resting-state networks
(RSNs) and their corresponding time courses using group ICA, the
six head motion parameters are regressed out from the time courses.
Third, the mean frame-wise displacement (FD) is estimated based on
the head motion parameters and is used as a covariate in the
statistical analysis [34].

It is necessary to investigate dFNC and measurements of neural
or physiological processes simultaneously so as to understand the
neural-origin of these dynamic patterns. Studies have continued to
focus on this, and have provided mounting evidence showing
potential correlates of dFNC in simultaneously recorded electro-
physiological data [11,35,36]. A recent study used a dataset with
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simultaneously measured EEG and fMRI data to explore whether
FNC states correspond to electrophysiological signatures [11]. The
study not only identified functional states similar to that observed
in previous studies in an independent sample but also showed that
FNC changes are highly associated with EEG spectral signatures.

2.3. Reliability and replicability

Another question is whether dFNC variation can be modeled
best by a multi-stable state space, which assumes that multi-stable
connectivity patterns influence the dFNC in time. Since the dFNC
analysis framework is a data-driven approach, some dynamic pat-
terns (such as the number of states and the FNC patterns of each
state) are not so consistent across different datasets. For example,
in Ref. [1], seven reoccurring functional states were identified in
healthy subjects, but in Refs. [34,37], only five functional states
were observed from a resting-state dataset including both healthy
controls and schizophrenia patients. Several reviews have men-
tioned the need to examine the reliability of dynamic patterns
captured by the dFNC analysis framework [12,38]. Studies have
begun to investigate the replicability of dFNC patterns in large rest-
ing-state fMRI samples [1,23]. By evaluating the HCS method and
the FMS method on an fMRI dataset with extremely large sample
size (n = 7500), a recent study demonstrated that the dFNC analysis
framework captures highly replicated and reliable dynamic pat-
terns in resting-state FNC [23]. Abrol et al. [23] also conducted a
surrogate dataset analysis showing that the observed dFNC
patterns are indeed statistically significant. The overall results
demonstrated that the dFNC analysis framework is robust against
variation in data quality, analysis, grouping, and decomposition
methods.

2.4. Alternative approaches

There are also many variations on the framework for the explo-
ration of dynamic patterns in the resting-state, such as hidden
Markov models that estimate probabilities between gradual transi-
tions [ 18], change point models that focus on transition points [21],
dynamic coherence analysis that offers a data-driven window
using wavelets [19], windowless analysis [20], co-activation pat-
tern analysis [31], flexible least-squares-based time-varying
parameter regression strategy [39], and independent vector
analysis to capture spatial variations over time [16]. Each of these
approaches appears to offer a complementary perspective on
time-varying connectivity in resting-state fMRI.

3. Conclusion

The dFNC analysis framework is a novel and powerful technique
for the exploration of dynamic patterns in resting-state FC.
Comprehensive studies in both real and surrogate datasets
demonstrate this framework to be a robust tool for characterizing
reliable and highly replicated dFC features. This framework has
been applied in many psychiatric disorder studies and identifies
numerous atypical patterns in dFC that may serve as candidates
for neuroimaging biomarkers within heterogeneous clinical
populations. Taken together, these findings support and expand
previous knowledge regarding static brain connectivity and
atypical brain connectivity in disorders, and strongly suggest the
use of the dFNC analysis framework for better improving our
understanding of brain functional mechanisms.
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