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Domesticated and non-domesticated animals, including wildlife, deliver significant financial and
nonfinancial benefits to the human community; however, disease can have a dramatic impact on the
morbidity, mortality, and productivity of these animal populations and hence can directly and indirectly
affect the human communities associated with them. This manuscript provides an overview of the
important features to consider for the prevention and control of disease, with a focus on livestock dis-
eases, and highlights the key role veterinary epidemiology plays in this endeavor. Measures of disease
frequency and the type of epidemiological studies required to identify risk factors for diseases are sum-
marized, with a focus on the use of these in the implementation of measures to control disease. The
importance of biosecurity in maintaining disease-free flocks/herds is discussed and the steps taken to
implement good biosecurity measures are outlined. It is concluded that a sound knowledge of veterinary
epidemiology is required when developing control programs for disease and implementing biosecurity
programs at a farm, regional, and national level.

� 2020 THE AUTHOR. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Domesticated and non-domesticated animals deliver significant
financial and nonfinancial benefits to the human population.
Livestock plays an important economic role for communities and
families by providing food, fiber, hides, manure for fuel and fertili-
zer, and draught power, as well as having cultural significance and
playing a role in the status of individuals in certain societies [1,2].
Pet animals, particularly dogs and cats, are important companions
in many households, and contribute to the physical, social, and
emotional development of children and the well-being of their
owners [3–7], while non-domesticated animals (wildlife) provide
a range of benefits to humans, including economic, health,
recreational, scientific, and ecological values [8]. However, disease
can have a significant impact on the productivity of livestock and
the quality of product produced [9], the lifespan and quality of
the life of pets, and the biodiversity of wildlife, with the potential
for many disease pathogens to be transmitted to humans [4]. Fur-
thermore, 60% of emerging infectious diseases in humans are esti-
mated to be zoonotic, with over 70% of these originating from
wildlife [10].

With recent emphasis on improving food safety, food security,
biodiversity, and improving animal and public health, measures
are increasingly being taken to reduce the risk of disease introduc-
tion or spread within animal populations and from animal to
human populations [11]. The control (i.e., reduction in the inci-
dence and/or prevalence to a locally acceptable level), prevention
(i.e., preventing entry) and/or eradication (i.e., total elimination)
of diseases in animal and human populations require a thorough
understanding of epidemiology [12]. Veterinary epidemiology pro-
vides the tools to investigate disease outbreaks, identify risk fac-
tors for disease, investigate diseases of unknown etiology,
undertake disease surveillance and monitoring, implement herd
health programs, and develop and implement biosecurity mea-
sures [13]; hence, this discipline is an essential component of dis-
ease control, eradication, and prevention [12].

This manuscript focuses on the role and significance of veteri-
nary epidemiology in the control, prevention, and eradication of
diseases in domesticated and non-domesticated animals and in
the implementation of biosecurity programs in farmed livestock
populations.
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2. Key concepts of epidemiology

A key principle of veterinary epidemiology is that disease does
not occur randomly in a population, but is more likely to occur in
certain members/groups of a population, at certain times, and in
specific locations; in other words, disease follows specific patterns
[12,14]. Central to disease control is the identification of these pat-
terns and the risk factors that increase the likelihood of disease, as
well as factors that reduce the likelihood of disease, so that mea-
sures can be implemented to reduce the frequency, severity, and
impact of disease [9,12,13,15].

Diseases are multifactorial with direct and indirect causes, fac-
tors, or attributes working together to produce disease; this inter-
relationship is often displayed graphically as a causal web for
clarity purposes [15]. A number of models of disease causation,
which are suitable for both infectious and non-infectious diseases,
have been proposed. Among the simplest of these is the epidemio-
logic triad, which is the traditional model for infectious disease
[12,14]. The triad consists of an external agent (bacteria, virus,
parasite, fungi, or prion), a susceptible host, and an environment,
including management and husbandry practices, which bring the
host and agent together. In this model, disease results from the
interaction between the agent and the susceptible host in an envi-
ronment that supports transmission of the agent from a source to
that host [14–16].

By manipulating the environment, such as by reducing fecal
contamination, reducing overcrowding, or eliminating the carriers
or vectors of pathogens, we can reduce disease [4,12,14,17–19].
Similarly, by selecting animals that are resistant to disease or by
increasing the resistance of the population through natural or arti-
ficial means [1,14], we can reduce the severity of disease and hence
the disease’s impact. In contrast, although some host factors—par-
ticularly age and gender—are closely linked with many diseases,
we cannot manipulate these factors within a population. For exam-
ple, Fentie et al. [2] observed that females and younger animals
were more at risk of sheep and goat pox than males and older ani-
mals, respectively, and Zeng et al. [20] reported an increasing
prevalence of brucellosis in yaks with age. Such information is use-
ful in predicting infection within a population or group of animals,
but is difficult or impossible to act upon in a disease-control pro-
gram, as these animal attributes cannot be manipulated or totally
removed from a population.

Agents that result in disease in only one or a small number of
species are more amenable to control, prevention, or eradication
[12] than pathogens that lack host specificity, such as foot-and-
mouth disease (FMD) and cystic echinococcosis [18,21]. Similarly,
the mode of transmission, presence, and survival of environmental
stages, and the presence of reservoirs, carriers, and vectors all
influence the distribution and measures adopted for disease
control [12,14]. The presence of wildlife can play an important role
in the transmission of certain diseases to both humans and other
animals by acting as carriers for agents such as lyssaviruses and
Henipah viruses and leptospirosis [22–25], or as hosts for parasites
such as Echinococcus spp. [4,18]. Vectors that are key to the trans-
mission of certain pathogens and diseases, such as blue-tongue,
have been affected by increasing vector distribution through the
effects of global warming [26]. The long-term survival of
pathogens, such as Clostridium botulinum [27] and Bacillus anthracis
[28], in the environment is critical to the distribution and
continuation of these specific diseases and is also useful in
predicting disease occurrence [14].

Although the agent, host, and environmental features of a dis-
ease are useful in predicting disease location and occurrence, in
order to evaluate the impact or success of a disease-control or pre-
ventive program, the frequency of a disease must be measured
[12,14].
3. Disease frequency

The two measures of disease frequency used in epidemiology
are prevalence and incidence, and the change in these parameters
is a key outcome of disease-control programs.

Prevalence is a static measure of disease and is usually reported
as the proportion of individuals that are infected/positive with the
pathogen, or the proportion that are seropositive on a serological
assay. This measure is usually reported as a percentage, and should
include 95% confidence intervals (CIs) to provide estimates of the
disease frequency in the sampled total population and for compar-
ing results between studies. In a study of brucellosis in yaks in
three counties of the Tibet Autonomous Region, China, Zeng et al.
[20] reported a test prevalence in individual yaks of 2.8% (95% CI:
2.0–3.7) and 18.2% (95% CI: 12.9–24.6) in herds using a Rose Bengal
Test (RBT) and a competitive immune-enzymatic assay (C-ELISA)
interpreted in parallel. However, a test prevalence is influenced
by the sensitivity and specificity of the tests used; consequently,
many studies adjust test prevalence for these features of a diagnos-
tic test(s) using the formula true prevalence = (test prevalence
+ specificity � 1) � (sensitivity + specificity� 1) [14]. For example,
after adjusting for test uncertainty, Dukpa et al. [29] reported a
true animal-level prevalence for FMD in cattle from Bhutan of
17.6 (95% CI: 15.6–19.5). Estimation of a disease’s true prevalence
allows the comparison of control measures in different locations
when different diagnostic tests are utilized, and is critical when
attempting to demonstrate a population’s disease-free status
[30,31].

In contrast to prevalence, which measures the current fre-
quency of a disease or antibodies, and which is a static measure,
incidence is a dynamic measure that measures the spread of dis-
ease. Incidence is usually reported as either an incidence risk
(cumulative incidence) or incidence rate (incidence density)
[14]. For example, the study by Bran et al. [32] reported a cumu-
lative incidence (incidence risk—new cases of disease during a set
period of time) of lameness in dairy cattle over a four-month per-
iod of 29.6% (indicating that nearly one third of the dairy cattle
under study developed lameness during the study period). Their
study highlighted the importance of specific risk factors for lame-
ness, with animals having a lower body condition score, higher
parity, and lesions on the hooves being more likely to develop
lameness.

In contrast to incidence risk, incidence rate is the number of
new cases of disease in a population divided by the total number
of animal time units at risk. In a study investigating cow- and
herd-level risk factors for elevated somatic cell counts (eSCC) in
stall-housed dairy cows, Watters et al. [33] reported a mean herd
incidence rate of 0.91 eSCC per cow-year at risk for all study herds.
These dynamic measures indicate the risk or likelihood of animals
contracting a disease during a specific period of time [14].

The prevalence and incidence of a disease can alter through
changes in disease terminology, disease recording, and diagnostic
techniques [14], as well as through changes in the disease’s fre-
quency resulting from true disease spread, or in its control result-
ing from successful implementation of a disease-control program.
A successful disease-control program should result in a cost-
effective reduction in disease prevalence and incidence through
the manipulation of risk factors for the specific disease [34].
4. Identification of risk factors for disease

Identifying factors that increase the risk of disease or those that
reduce the risk of disease (protective factors) is important so that
potential measures can be implemented to either reduce disease
or prevent its entry [12,14,35].
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Risk or protective factors for a disease can be demographic, hus-
bandry/management, environmental, or socioeconomic factors,
and are assessed by conducting descriptive epidemiological studies
(cross-sectional, case-control, or cohort studies). The strength of
the association between a putative risk factor and a disease is most
commonly assessed using the calculated odds ratio (OR) and their
95% CIs [12,14].
4.1. Cross-sectional studies

Cross-sectional studies are frequently used to assess a disease’s
prevalence or seroprevalence and to identify risk factors for that
disease; however, they are of less use for rare diseases and can
be subject to confounding [12,14].

Miyama et al. [36] reported a test herd prevalence of 65% to lep-
tospirosis in a cross-section of 109 dairy herds in southern Japan.
In that study, they identified larger herds and herds that contained
introduced animals from Hokkaido as risk factors for
seropositivity. However, their findings highlight some of the
challenges in disease control, as larger herds offer economic
benefits and economies of scale compared with smaller herds.
Similarly, in a large study of oesophago–gastric ulcers (OGU) in
pigs in Australia, Robertson et al. [34] reported that most risk
factors for herds with a high level of OGU (i.e., feeding a ration
ad libitum: OR 13.7; using an automated feeding system: OR 7.8;
and feeding a pelleted ration: OR 384) could not cost-effectively
be manipulated because of their association with decreased feed
wastage, improved growth rate, and reduced labor costs. In con-
trast, other factors associated with a higher prevalence of OGU
(i.e., using water sourced from a dam rather than from an under-
ground bore: OR 3.8; a change in ration formulation for finisher
pigs: OR 1.5) were amenable to manipulation.

Similarly, in a study of obesity in dogs [37], it was found that
overweight dogs had higher odds of being neutered (OR 2.8), being
fed snacks (OR 1.5), being fed once a day (OR 1.4), and living in a
single-dog household (OR 1.6). In contrast, for each hour of weekly
exercise, the odds of obesity decreased (OR 0.9)—that is, exercise
was protective in reducing the risk of obesity. From such findings,
it was recommended that owners be advised to stop offering
snacks, to divide the current meal into halves and feed these at
two separate times of the day, and to increase exercise for their
dogs [37].
4.2. Case-control studies

Case-control studies are well suited for rare diseases and
involve selecting cases (diseased animals/farms/herds) and ran-
domly selecting or matching with controls (non-diseased animals/
farms/herds) [12,14]. Jiang et al. [38] undertook a case-control
study of avian infectious diseases in household flocks in the Poyang
Lake region, China, in which cases and controls were identified
based on a history of poultry deaths. In that study, they showed
that adopting a vaccination program was a protective factor reduc-
ing the likelihood of being a case (OR 0.4), while contact with other
backyard flocks increased the risk of deaths in the flock (OR 1.72),
as did poultry-housing density within a 20 m radius of the farmer’s
house (OR 1.08).

White et al. [39] used a case-control study to identify risk fac-
tors for congenital chondrodystrophy of unknown origin in beef
cattle herds in Australia. That study highlighted the use of the epi-
demiological approach to investigate risk factors for diseases of
unknown etiology with the type of pasture, terrain, and presence
of soil potassium levels influencing the disease’s presence. These
findings provided evidence of an association between maternal
nutritional disturbance and the disease.
Toyomakia et al. [40] similarly used a case-control approach to
identify risk factors for porcine epidemic diarrhea (PED) during the
early phase of an epidemic in Japan. They found that the occur-
rence of porcine reproductive and respiratory syndrome within
the preceding five years (OR 1.97), the use of a common compost
station for carcasses and waste (OR 2.51), and the use of a pig
excrement disposal service (OR 2.64) increased the likelihood of
PED. These findings highlight the impact of management factors
plus intercurrent disease on the presence of PED, as has been
reported with many other diseases [14].

Puerto-Parada et al. [41] undertook a retrospective case-control
study to evaluate the association between selected risk factors and
infection of dairy cattle herds with Mycobacterium avium subsp.
paratuberculosis (MAP). Herd size (OR 1.17) and the proportion of
cows purchased per year in the last five years to the total herd size
(OR 5.44) were significantly associated with a positive MAP herd
status. The latter finding highlights the risk of introducing MAP
into a MAP-free herd through the introduction of animals, which
is also a risk for many other infectious diseases.
4.3. Cohort studies

Cohort studies—albeit costly and time-consuming to implement
and not suitable for rare diseases—offer the advantages of provid-
ing data to allow the calculation of incidence and generally mini-
mizing confounding results [12,14]. In a study by Pires et al. [42],
a longitudinal cohort study involving eight repeat samplings of
900 pigs was undertaken to assess Salmonella shedding by the ani-
mals. Cold exposure (temperatures below the animal’s thermal
neutral zone) and exposure to a temperature humidity index
(THI) > 72 were both positively associated with Salmonella shed-
ding. The researchers concluded that their data suggested that
the pig’s thermal environment was a component of the causal
pathway for salmonellosis, and that reducing the exposure of pigs
to suboptimal thermal parameters should decrease Salmonella in
swine; this conclusion highlighted the role of environment in this
disease.

Similarly, Pinchbeck et al. [43] undertook a prospective cohort
study of racing injuries over a two year period and measured the
incidence of injuries in a cohort of horses in the United Kingdom
(28.8 per 1000 starts). They found that risk factors for injuries were
associated with the speed of the race and the horse’s foot confor-
mation. These findings again emphasize that not all disease risk
factors can be manipulated.

The key outcome of undertaking epidemiological studies similar
to those listed has been to identify risk factors for disease. Knowl-
edge of these risk factors allows recommendations to be developed
to control disease, and this knowledge is subsequently incorpo-
rated into biosecurity programs developed for the relevant live-
stock species.
5. Biosecurity

In the 21st century and late 20th century, there has been a shift
from treating individuals toward disease prevention, which has led
to an increasing emphasis on the implementation of biosecurity
[44]. To maintain a farm, region, or country free from disease,
biosecurity is critical. Biosecurity has been described as the man-
agement of the risk of pests and diseases entering, emerging,
establishing, or spreading and causing harm to animals, plants,
human health, the economy, the environment, or the community
[45]. Although this concept operates at a national and international
level, most veterinarians are involved in evaluating and prevent-
ing the spread of disease on individual farming enterprises under
their care [17]. A key component of farm-level biosecurity is
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biocontainment or internal biosecurity, which has been described
as the series of management practices that prevent the spread of
infectious agents between animal groups on a farm or the manage-
ment practices designed to prevent the infectious agent from leav-
ing the farm [46–48].

To facilitate the adoption and emphasize the key concepts of
biosecurity and biocontainment within enterprises, a series of
acronyms have been developed including isolation, resistance
and sanitation (IRS) [49] and sanitation, traffic control, assessment,
isolation, resistance, and security (STAIRS) [50]. Education, train-
ing, and the involvement of all stakeholders are essential for the
success of biosecurity at the enterprise, regional, and national
levels; these stakeholders include the owners, managers, and
workers on livestock enterprises, industry bodies, and rural and
urban communities [51–53]. Numerous articles and websites are
available on biosecurity at the national and international levels
[51,54,55]. This section focuses on the implementation of biosecu-
rity at a farm or enterprise level.

Development and implementation of a biosecurity plan in a
livestock enterprise require a documented approach, and scoring
systems have been developed to rank biosecurity protocols and
their implementation [56,57].

Carr and Howells [17] summarized biosecurity requirements for
poultry and pig enterprises, and emphasized that the introduction
of animals of the same species presented the highest danger of
introducing disease. Fèvre et al. [58] similarly highlighted the
importance of animal trade in the introduction of pathogens to
previously disease-free herds/areas, while Siengsanan-Lamont
et al. [59] demonstrated the increased risk of avian influenza in
poultry flocks in Thailand through introduced birds, Dukpa et al.
[29] reported an increased risk of FMD in communally grazed
herds in which mixing of multiple herds occurred, and La et al.
[60] and Phillips et al. [61] showed the dangers of introducing Bra-
chyspira hyodysenteriae into piggeries through the introduction of
live pigs. If live animals are introduced into a unit, the introduced
animals should be maintained in isolation from the resident popu-
lation for at least one month during which time their health status
can be assessed and the new animals can be exposed to the flora
present in their new location [17].

The danger of disease entry through the introduction of live ani-
mals has led to the recommendation that intensive livestock indus-
tries should be maintained as closed herds/flocks/units [62].
However one of the challenges of maintaining a closed-herd sys-
tem is the introduction of new superior genetics in a safe manner.
Although this has traditionally been undertaken through the use of
imported semen or embryos, such an approach can still present a
risk of disease introduction [63,64]; for example, de Smit et al.
[65] reported the presence of classical swine fever virus in the
semen of boars without any evidence of clinical disease.

Contact of livestock with neighboring or feral/wild animals of
the same species has also been identified as a risk for disease entry
[60,61,66,67]. This risk can be minimized through barrier fencing
and population control in the case of feral and wild animals
[68,69]. Secure perimeter fencing—particularly for intensive live-
stock industries—to minimize the entry of other animals, people,
and vehicles is considered essential [17].

The role of species other than that being raised—including both
domesticated animals and wildlife—in introducing a range of dis-
eases has been reported in a large number of studies. La et al.
[60] reported the detection of Brachyspira hyodysenteriae in domes-
ticated dogs, rodents, and birds and proposed that these animals
could either introduce the agent or new strains into piggeries. On
detecting similar strains of Salmonella enteritidis in mice, rats, flies,
and foxes to those in layer poultry, Liebana et al. [70] proposed that
these animals and vectors could introduce and transmit the bac-
terium between poultry enterprises. Multiple authors [23,59,71]
have also highlighted the potential for wild birds to act as carriers
of avian influenza viruses, and minimizing contact between live-
stock and all wild or feral animals is recommended [17]. Similarly,
control of vectors—particularly of birds, rodents, flies, and other
insects—that have the potential to transfer pathogens to livestock
should be implemented [23,59–61,70,71].

People visiting livestock enterprises—including veterinarians,
livestock advisors, inseminators, hoof-trimmers, and feed suppli-
ers—are also a potential risk for disease introduction into a unit
[17,57,62,72]. To reduce this risk, only essential visitors should
be allowed to visit the area/buildings where animals are housed,
and protective clothing and footwear should be provided by the
enterprise to these visitors [62,73,74]. Such protective clothing
and footwear should be provided for all workers and visitors, and
should not be worn on any other unit or outside the enterprise
[62]. Similarly, visitors and workers should be required to
shower-in and shower-out of enterprises in order to reduce the
risk of disease introduction and escape from an enterprise.

Dead animals should be removed and disposed of by burning,
burial, or composting to decrease the survival of pathogens and
to avoid access by scavengers [17,18,75]. Manure and used litter/
bedding material should also be composted and disposed of to pre-
vent access by other animals [75–77].

The dangers of pigs having access to (i.e., eating) uncookedmeat
or food products (i.e., swill) have been highlighted for several pan-
demic diseases including African swine fever, classical swine fever
(hog cholera), and FMD [78–80]. Consequently, swill feeding has
been banned in many countries in order to minimize these disease
risks.

Contaminated feed and water can result in the introduction of
diseases such as toxoplasmosis from contamination with Toxo-
plasma gondii cysts from cats [81–83], and ingestion of pasture
contaminated with eggs of Echinococcus spp. is important in the
infection of small ruminants [18]. Ensuring that feed sheds and
water sources are protected from vermin and other animals is
essential in reducing these risks.

Only essential vehicles should have access to livestock enter-
prises, and the entry of these can be minimized through the erec-
tion of perimeter fencing. Building infrastructure to allow feed to
be delivered externally to an enterprise and then moved via augers
into storage bins/silos and laneways that are used to direct animals
from buildings to outside the perimeter fencing are useful in
decreasing disease-entry risk from potentially contaminated feed
trucks and livestock-transport vehicles. Vehicles that are required
to enter an establishment should be required to enter and exit only
via a single point through facilities to wash and disinfect the
wheels and, ideally, the whole vehicle [67].

The introduction of equipment contaminated with feces and
other animal products (e.g., hair, feathers, saliva) to a farm is also
a potential disease introduction risk [67], with many studies high-
lighting the risk of the introduction of diseases, such as Newcastle
disease, through the entry of contaminated equipment and fomites
[72,74].

Workers on livestock enterprises should be discouraged or pre-
vented fromworking at other livestock enterprises or from keeping
similar livestock [17,62,70]. Staff should also be discouraged from
visiting other livestock units, animal markets, animal shows, and
slaughterhouses, or if they do, should have no contact with animals
on the employing enterprise for at least three days after such
events [17,84,85].

The density of livestock enterprises, proximity to neighboring
same-species units, and proximity to slaughter houses and major
transport routes have also been proposed to influence the risk of
disease introduction to a herd/flock [21,77].

Traditionally intensive industries have been able to implement
biosecurity more effectively than small-holder or extensive



24 I.D. Robertson / Engineering 6 (2020) 20–25
industries; however, Compo et al. [86] emphasized that although
many farmers were aware of biosecurity practices, many failed to
adopt the protocols recommended for their establishments. Sev-
eral authors have also highlighted lower levels of biosecurity in
hobby or small-scale enterprises that are more likely to have a poor
understanding of the needs for biosecurity, poorer confinement of
animals, and inferior infrastructure in comparison with larger com-
mercial enterprises [57,87]. Others [53,88] have emphasized the
important role of education in ensuring that biosecurity practices
are adopted by the livestock industries to reduce the risk of disease
entry in order to enable maximum productivity from these
industries.

Disease control and prevention require a multifaceted approach
with a thorough knowledge of the current disease situation in an
enterprise, the likely disease threats, and how the risk of introduc-
tion can be minimized. Such an approach requires a sound knowl-
edge of the discipline of veterinary epidemiology, with an
understanding of disease transmission and spread, risk factors for
disease, and methods to prevent disease. It is concluded that biose-
curity is critical to ensuring the health and productivity of livestock
within an enterprise, region, and country, and that a knowledge of
veterinary epidemiology is essential for developing sound biosecu-
rity practices.
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