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Many viral diseases are endemic in cattle populations worldwide. The ability of many viruses to cross the
placenta and cause abortions and fetal malformations is well understood. There is also significant
evidence that viral infections have additional actions in dairy cows, which are reflected in reduced con-
ception rates. These effects are, however, highly dependent on the time at which an individual animal
first contracts the disease and are less easy to quantify. This paper reviews the evidence relating to five
viruses that can affect fertility, together with their potential mechanisms of action. Acute infection with
non-cytopathic bovine viral diarrhea virus (BVDV) in mid-gestation increases abortion rates or causes the
birth of persistently infected calves. BVDV infections closer to the time of breeding can have direct effects
on the ovaries and uterine endometrium, which cause estrous cycle irregularities and early embryo mor-
tality. Fertility may also be reduced by BVDV-induced immunosuppression, which increases the suscep-
tibility to bacterial infections. Bovine herpesvirus (BHV)-1 is most common in pre-pubertal heifers, and
can slow their growth, delay breeding, and increase the age at first calving. Previously infected animals
subsequently show reduced fertility. Although this may be associated with lung damage, ovarian lesions
have also been reported. Both BHV-1 and BHV-4 remain latent in the host following initial infection and
may be reactivated later by stress, for example associated with calving and early lactation. While BHV-4
infection alone may not reduce fertility, it appears to act as a co-factor with established bacterial patho-
gens such as Escherichia coli and Trueperella pyogenes to promote the development of endometritis and
delay uterine repair mechanisms after calving. Both Schmallenberg virus (SBV) and bluetongue virus
(BTV) are transmitted by insect vectors and lead to increased abortion rates and congenital malforma-
tions. BTV-8 also impairs the development of hatched blastocysts; furthermore, infection around the time
of breeding with either virus appears to reduce conception rates. Although the reductions in conception
rates are often difficult to quantify, they are nevertheless sufficient to cause economic losses, which help
to justify the benefits of vaccination and eradication schemes.
© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Although viral disease remains a major cause of financial loss to
the modern cattle industry, its potential impact on fertility is
generally underestimated, and the main mechanisms of action
are often unclear. Factors including trade globalization, increases
in herd size, and environmental change have contributed to the
spread of existing pathogens and the introduction of disease into
regions and animal populations that were previously free of it
[1]. Poor fertility and udder health/milk quality remain the two
major causes of concern among dairy producers [2]. In terms of

* Corresponding author.
E-mail address: dcwathes@rvc.ac.uk (D.C. Wathes).

https://doi.org/10.1016/j.eng.2019.07.020

fertility, the ability of viruses to cause abortions and fetal malfor-
mations has probably received the most attention [3]. The outcome
is generally dependent on the stage of pregnancy during which the
initial infection occurs. The effects of viral diseases on reproductive
performance are, however, much more pervasive and can have
many subtle effects through reductions in conception rates and
increased risk of culling through failure to conceive in a timely
fashion. Excluding fertilization failure, approximately 40% of
bovine embryos die in the first three weeks after service or insemi-
nation, with cows returning to estrus after 21-24d. A further
10%-20% of embryos are lost between days 24-60 of gestation
[4]. In comparison, abortion rates on cattle farms are usually quite
low (5%-10%) and have many potential etiologies that are often
difficult to diagnose reliably [5]. In addition to the loss of the fetus,
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an abortion does, however, often have adverse effects on the fate of
the dam. Depending on the stage of gestation when it occurs, the
cow either may need to be rebred (thus increasing her calving
interval) or may start the next lactation prematurely. In one study,
for example, 4.8% of 7768 Holstein heifers aborted. This increased
their risk of leaving the herd without completing a first lactation
2.73 times. One third of the animals which did not complete a first
lactation either died or had to be culled within 50 d of calving [6].
The present short review focuses on five different viral infections
showing a variety of mechanisms that can have an impact on dairy
cow fertility.

2. Bovine viral diarrhea virus

Bovine viral diarrhea virus (BVDV) is discussed first and in the
most detail, as its effects on fertility have been the most widely
studied; thus, more is understood about its potential underlying
mechanisms. BVDV is a Flaviviridae pestivirus that is endemic in
many countries worldwide, with a prevalence of 40%-90% in indi-
vidual cattle and 28%-66% in cattle herds [7,8]. It comprises a
single-stranded, positive-sense RNA genome that is classified by
sequence differences as type 1 or 2 (BVDV-1 or BVDV-2). There is
also a third type, BVDV-3 (a Hobi-like, atypical pestivirus). The
virus exists as either non-cytopathogenic (ncp) or cytopathogenic
(cp) biotypes, with the ncp biotype causing the majority of field
losses [9]. BVDV exhibits vertical transmission from mother to
fetus, has a broad tissue tropism, and can infect the host either
transiently or persistently [10]. Such RNA viruses display signifi-
cant genetic variation, facilitating the emergence of new species
[11]. Mammalian cells normally produce type I interferons (IFNs)
in response to viral infection, which then trigger a cascade of
antiviral pathways. BVDV causes immunosuppression through its
ability to inhibit IFN production, thereby delaying the host’s
responses and enhancing the ability of the virus to complete its
replication cycle [12,13].

BVDV infection generally occurs via the oronasal route, but
direct transmission to the reproductive tract via semen or embryo
transfer is also possible [14,15]. Acutely infected animals usually
eliminate the virus within 10-14 d, but transmissible virus can
persist for much longer in some animals that have apparently
recovered [16]. In rare cases, bulls develop a persistent infection
of the testes—an immune-privileged site. More commonly, BVDV
is detectable by reverse transcription polymerase chain reaction
(RT-PCR) in semen for some months after an initial acute infection,
although the continued risk of viral transmission appears to be
unlikely after nine weeks [15]. Fetal infection with ncp BVDV
before the development of immune competence (i.e., prior to ges-
tation day 120) results in early embryonic death, later abortion, or
the birth of an immunotolerant calf that is persistently infected (PI)
[17]. The PI calf can continuously shed virus from all secretions,
and is therefore a major source of infection within a herd.

The effects of acute BVDV infection vary extensively depending
on both biotype and virulence, and this can lead to either avoid-
ance or initiation of apoptotic and innate immune responses. Ncp
BVDV can dampen innate immune responses in several ways
[13,18]. The virus is first detected by toll-like receptor (TLR)-3 or
TLR-7/TLR-8 located in intracellular compartments or by cytoplas-
mic pattern-recognition receptors (RIG-I, DDX58), which detect
single-stranded RNA. The downstream signaling pathway from
TLR-3 involves the IFN regulatory factor (IRF)-3 and IRF-7, which
usually upregulate the transcription of type I IFNs. The BVDV pro-
tein NP targets IRF-3 toward proteasomal degradation, thus
inhibiting downstream signaling and preventing the IFN rise [18].
Guanylate-binding protein 4 (GBP4), an IFN-inducible GTPase,
can also inhibit this pathway while leaving NF-xB signaling intact

[19]. In addition, the secreted BVDV structural protein E™
degrades viral RNA through its extracellular function as a ribonu-
clease [20].

Many of the economic losses attributed to BVDV are due to sub-
optimal fertility, in addition to causing abortion and fetal defor-
mity at later stages of gestation [10,17]. BVDV-induced
immunosuppression increases susceptibility to other diseases,
which may then also affect fertility. Conception rates fell by up
to 44% following experimental infections with BVDV either 9 d
before or 4 d after insemination [21]. The review by Fray et al.
[22] cited many similar results that have been reported following
ncp BVDV infection in the field, in spite of the occasional report
to the contrary. Since then, Riifenacht et al. [23] measured fertility
parameters in Swiss dairy herds with a high prevalence of BVDV
using individual seroconversion measurements to assess the time
of likely exposure. Infection during the first 45 d of gestation did
not influence non-return rates, but infection in mid-gestation
was associated with an increased abortion rate from 6.1% to
15.8%. The timing of exposure is clearly critical, as Rodning et al.
[24] reported that when PI animals were introduced to naive hei-
fers 50 d prior to the start of breeding, they developed active
immunity and there was no adverse effect on reproductive perfor-
mance. Newcomer et al. [25] undertook a meta-analysis of 46 stud-
ies to determine the potential benefits of vaccination against BVDV
on three reproductive outcomes. Vaccinated cows experienced a
reduction in both abortion and fetal infection rates of nearly 45%
and 85%, respectively, compared with unvaccinated cohorts, while
the risk of becoming pregnant was smaller but nevertheless
improved by about 5%. It is likely that a change of this magnitude
would fail to reach significance in smaller studies due to a lack of
statistical power.

A variety of mechanisms have been suggested to account for
such reductions in fertility via effects on the ovary, uterus, and
early embryo. BVDV antigen was detectable in ovaries 60 d after
acute infection [26] and in oocytes and follicular cells of PI heifers
[27]. Animals infected with BVDV develop oophoritis [26] and have
impaired ovulation and ovarian steroidogenesis [27-29]. When
heifers were infected with acute ncp BVDV, follicular growth pat-
terns were affected through the subsequent two estrous cycles,
including reduced growth of dominant follicles [30]. Similarly,
when heifers were infected 9 d before a synchronized estrus,
luteinizing hormone (LH) pulsatility was decreased, there was a
delay from ovulation to the progesterone rise, and subsequent pro-
gesterone levels were lower [28,31]. These results align with stud-
ies showing that various types of stress can either delay or inhibit
ovulation mechanisms [32,33], while both heat stress and intra-
mammary infection can reduce follicular steroidogenesis, disrupt
follicular dominance, and reduce the pre-ovulatory LH surge [34].
Any acute infection occurring at this critical stage of the estrous
cycle is likely to have a similar effect.

The uterine endometrium is also recognized as a major site for
BVDV infection [17,29]. BVDV was found in the uterus 7-16 d after
infecting heifers with BVDV by either intravenous inoculation or by
breeding to a PI bull [14,35], while ncp BVDV was isolated from
uterocervical mucus 24 d after initial infection [22]. BVDV antigen
was also detected in macrophage-like cells of the endometrium in
23% of 65 cows examined in a slaughterhouse survey [36]. There is
good evidence for two mechanisms by which the uterine presence
of BVDV may have detrimental effects on fertility: first, by predis-
posing cows toward the development of endometritis; and second,
by interference with the establishment of pregnancy. The bovine
uterus is colonized with many bacterial species following calving
in over 90% of cows [37]. These bacteria should be cleared rapidly
using mucosal defense systems and an innate immune response
involving endometrial epithelial and stromal cells in addition to
professional immune cells [38,39]. This early innate response is
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crucial to avoid the development of uterine disease; nevertheless,
many dairy cows do develop metritis and/or endometritis (esti-
mated at around 40% and 20% of all animals, respectively) [38].
In cultured bovine endometrial cells, experimental infection with
ncp BVDV inhibited a variety of immune pathways normally acti-
vated in response to a challenge with bacterial lipopolysaccharide
(LPS), including downregulation of many interferon-stimulated
genes (ISGs), which are an important part of uterine defense
mechanisms [40,41]. Infection with ncp BVDV was also able to
switch endometrial prostaglandin production from prostaglandin
(PG)F,4 to PGE; [42]. PGF,, is recognized as an immune enhancer,
while PGE, acts as an immune suppressor and is luteotrophic
[43,44]; therefore, this switch may also reduce the endometrial
immune response to bacteria and increase the likelihood of a
cow developing a persistent corpus luteum [45], which is often
found in association with uterine disease [46].

Maternal recognition of pregnancy in cows is achieved through
the production of interferon tau (IFNT) by the trophectoderm of the
elongating conceptus [47,48], which inhibits the development of
endometrial oxytocin receptors, thereby preventing luteolysis
[49,50]. IFNT is a type I IFN that is structurally related to IFN-o
and IFN-B but lacks viral responsive elements in its promoter and
is therefore not upregulated by viral infection [51]. IFNT does, how-
ever, bind to the same IFN-o/IFN-B receptor on the uterine endo-
metrium. Together with progesterone, IFNT programs the uterine
endometrium to develop a receptive environment for implanta-
tion, including upregulation of many ISGs [50,52,53]. These are
likely to have crucial roles in the establishment of pregnancy via
modulation of uterine immunity, stromal remodeling, hyperplasia
of the endometrial glands, and development of the uterine vascu-
lature [52,54]. Acute infection with ncp BVDV alone has been
shown to have a limited influence on endometrial gene expression
in vitro [40]. However, infection did interfere with the ISG regula-
tory IRF-STAT1 and STAT2 pathways to inhibit IFNT-induced ISG
expression including ISG15, HERC5, USP18 (involved in protein
modification via ISGylation), DDX58, IFIH1 (cytosolic detection of
viral RNA) and IFIT3, MX2, RSAD2, and SAMD9 (immune regulators
with antiviral activity) [41]. Upregulation of the endometrial
ISGylation pathway is an important process in early pregnancy that
is conserved across mammalian species [55]. Therefore, dysregula-
tion of the antiviral IFN response by BVDV can undoubtedly inter-
fere with IFNT signaling in the endometrium, suggesting another
mechanism whereby infection in early gestation may reduce con-
ception rates.

There has been considerable research on the effects of BVDV on
bovine embryos following concern that naive cows might develop
BVDV following embryo-transfer procedures. Embryos produced
using both in vivo and in vitro techniques have been infected with
either ncp or cp virus at all stages from oocyte to hatched blasto-
cyst. The affinity of BVDV for in vivo-derived embryos varied
according to the strain of BVDV [56,57]. Uterine inoculation with
ncp BVDV-1 in the medium used for embryo transfer on day 7 of
a synchronized estrous cycle resulted in 6/10 heifers becoming
pregnant 30d later, but these pregnancies had been lost within
the following 30d [58]. Although BVDV replicated efficiently in
cumulus cells surrounding bovine oocytes, this did not affect the
development of the blastocysts subsequently produced by in vitro
fertilization [59]. Similarly, when oocytes, zygotes, 8-cell embryos,
morulae, and hatched blastocysts were infected with either ncp or
cp virus, development was only adversely affected with cp BVDV
and when the zona pellucida was not present [60]. In a more recent
study, cumulus-oocyte complexes were infected with BVDV-1,
BVDV-2, or BVDV-3 at different doses [57]. BVDV-1 had no effect
on the embryos that did develop, and BVDV-2 infection actually
increased cleavage rates but did not affect blastocyst rates. In both
cases, however, the degenerate embryos tested positive. Overall,

the oocytes infected with BVDV-1 and BVDV-2 developed normally
but carried the virus. BVDV-3 (Hobi-like virus) reduced both cleav-
age and blastocyst rates, so would be expected to cause pre-
implantation embryo loss in vivo. Bielanski et al. [35] used semen
from a PI bull on superovulated cows, collected day 7 embryos,
and transferred washed embryos to clean recipients. Although
BVDV was detected in the pre-transfer embryos, it did not infect
the new host. From this work, it was concluded that the risk of
transmission of BVDV to host cows via embryo transfer was mini-
mal providing correct washing procedures were applied, as recom-
mended by International Embryo Transfer Society guidelines [61].
This resulted in low copy numbers of virus, as measured by a sen-
sitive quantitative polymerase chain reaction (qPCR) technique
[62].

In summary, acute ncp BVDV infection causes intracellular
changes to ovarian and endometrial tissues through combined
effects on pathways regulating immunity. These effects can reduce
cow fertility by causing estrous cycle irregularities, early embryo
mortality, and immunosuppression. Infections during mid-
gestation increase abortion rates or may give rise to the birth of
PI calves.

3. Bovine herpesvirus-1

Infectious bovine rhinotracheitis (IBR) is a highly contagious
respiratory disease caused by bovine herpesvirus (BHV)-1 that is
characterized by acute inflammation of the upper respiratory tract.
BHV-1 is a virus of the family Herpesviridae and subfamily Alpha-
herpesvirinae. Although some countries have achieved IBR eradica-
tion [63], the disease remains endemic in dairy herds in many parts
of the world, including Britain and Ireland [8,64]. A recent meta-
analysis found a pooled prevalence of BHV-1 of 40% in Chinese cat-
tle [65]. It is a major contributing factor in calf pneumonia, which
remains the most common cause of mortality and morbidity in
dairy calves between 1 and 5 months of age [66]. BHV-1 can also
cause conjunctivitis, abortions, encephalitis, and generalized sys-
temic infections [5,63]. After the first infection, the virus is never
fully eliminated, remaining latent in nerve cells of the brain. From
there, it can be reactivated in times of stress, mediated via
increased glucocorticoids [67-69]. BHV-1 is only one of a diverse
range of pathogens that can contribute to bovine respiratory dis-
ease (BRD) including several other viruses (i.e., bovine respiratory
syncytial virus (BRSV), parainfluenza III virus (PI3), BVDV, and cor-
ona viruses), bacteria (e.g., Mannheimia haemolytica, Haemophilus
somnus, Pasteurella spp., and Mycoplasma), and fungal genera
(e.g., Aspergillus) [70].

Numerous epidemiology studies in various countries around
the world have determined that up to 46% of calves contract BRD
[70,71]. For the calves that survive, there is mounting evidence of
longer term consequences of juvenile disease on adult perfor-
mance [72,73]. BRD-affected animals have reduced growth rates
[71,74], which in turn delay the age at first breeding and first calv-
ing. This is often associated with bronchopneumonic lesions and
pleural adhesions [75]. For example, first parity was delayed by a
median of six months in heifers that had BRD in the first three
months of life [76]. Bach [74] reported that calves experiencing
four episodes of BRD before first calving had 1.87 + 0.14 greater
odds of failing to complete their first lactation in comparison with
healthy calves. Another study found that calving intervals were
increased by 12% in mature cows that had experienced severe
BRD as calves during their first three months [77,78]. In Irish herds
with a seasonal calving pattern that were identified as positive by a
bulk tank BHV-1 enzyme linked immunosorbent assay (ELISA), the
three-week calving rate was significantly lower in multiparous
cows in comparison with BHV-1 negative herds [79]. Two related
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epidemiology studies in Ethiopia found significantly higher rates of
uterine infection and retained fetal membranes in cows that were
seropositive for BHV-1 [80,81]. A meta-analysis of over 7500 ani-
mals showed an overall decrease in abortion risk of 60% in preg-
nant cattle vaccinated against BHV-1[82].

A number of studies have investigated the effects of treating
cattle with modified live IBR vaccine around the time of breeding.
Heifers inoculated at estrus [83], the day after [84], or on days 7 or
14 post-breeding [85] developed mild oophoritis characterized by
foci of necrosis, a few necrotic follicles, and mononuclear cell accu-
mulation in the corpus luteum. Heifers inoculated on days 21 or 28
post-breeding did not have lesions in the corpus luteum, but there
were numerous necrotic follicles [85]. Such lesions were not found
in ovaries from which BHV-1 was not isolated [84]. Vaccination at
estrus was followed by a reduction in circulating progesterone
[84,86]; conception rates were also reduced [86,87]. Although this
review relates primarily to cows, there is evidence that young bulls
exposed to BHV-1 at about six months of age had reduced sperm
quality six months later [88]. Givens [89] recently reviewed the
effects of a number of viral diseases on bulls and the transmission
risks of these diseases via semen.

In summary, a high proportion of dairy calves experience BRD,
which is often associated with BHV-1 infection. This slows growth,
leading to an increased age at first calving. Fertility, risk of culling,
and abortion rates are all subsequently increased. Information on
the direct effects on the reproductive tract is sparse, but there is
some evidence that infection can have a direct effect on ovarian
function.

4. Bovine herpesvirus-4

BHV-4 is a double-stranded DNA virus that is highly prevalent
in some dairy herds and has been associated with reduced fertility
[90,91]. In common with other herpes viruses, it can remain latent
in the host following an initial infection in several cell types includ-
ing macrophages. This results in a persistent infection [92], which
can be reactivated in vitro by glucocorticoids [93,94]. There is
evidence from measuring seroconversion that it can also be
reactivated in vivo during the periparturient period [95] and in
association with clinical metritis [96].

Like BVDV, BHV-4 can readily infect the uterus and has been
associated with metritis and endometritis; however, its role in fer-
tility is somewhat unclear, as it has often also been found in con-
trol cows that did not have uterine infection. In addition, tested
cows were usually also positive for recognized bacterial pathogens
including Escherichia coli, Trueperella pyogenes, Streptococcus spp.,
and Histophilus somni [97-100]. Nevertheless, there is evidence
that BHV-4 can be associated with reduced fertility. A comparison
between cows requiring one or two inseminations to conceive and
those needing more than two inseminations found a higher preva-
lence of BHV-4 in the cows requiring more inseminations [101].
Klamminger et al. [100] also recorded reduced risks of infected ani-
mals either being inseminated before 80 d after calving or conceiv-
ing within 200 d.

Unlike ncp BVDV, BHV-4 is cytopathic, and infection can Kkill
endometrial epithelial and stromal cells [102,103]. Accumulating
evidence supports the view that BHV-4 can act as a co-factor with
established uterine pathogens to promote the development of
endometritis [99,104,105]. Replication of BHV-4 depends on imme-
diate early gene 2 (IE2) transactivation, and it has been shown that
this promoter is upregulated by PGE,, tumor necrosis factor-o
(TNF-a), Escherichia coli, and LPS, all of which are associated with
bacterial infection of the endometrium [104,106]. BHV-4 in turn
activates the interleukin (IL)-8 gene promoter in endometrial cells
[103,107]. This is a key chemokine that attracts granulocytes to

the uterus. In a recent study, Tebaldi et al. [108] measured global
gene transcription caused by the BHV-4 infection of cultured bovine
endometrial stromal cells. In addition to IL-8, another main pathway
that was activated involved the upregulation of matrix metallopro-
teinase (MMP)-1. MMPs are involved in the remodeling of the post-
partum endometrium [109]. They are also important in controlling
the balance of immune responses. On the one hand, their proteolytic
activity can promote immune cell migration and activate cytokines
such as IL-1, IL-8, TNF-a, and defensins [110]. On the other hand,
over-activation of MMPs has been associated with many
immunopathological outcomes (reviewed in Ref. [108]).

In summary, the evidence to date suggests that BHV-4
infections are quite common in dairy cows. The virus on its own
probably does not cause clinical uterine disease, but it can be reac-
tivated from latency in the endometrium following calving and
then act together with bacterial pathogens to increase the risk of
uterine disease by disrupting innate immunity and impairing
uterine repair mechanisms.

5. Schmallenberg virus

Schmallenberg virus (SBV) first emerged in Europe in 2011.
Phylogenetic analysis showed that it belongs to the Simbu sero-
group of the genus Orthobunyavirus [111]. SBV is transmitted by
Culicoides midges and affects both domestic and wild ruminants
including sheep, goats, and cattle. The clinical signs of disease in
adult cows are quite mild and include fever, a drop in milk yield,
and diarrhea with peak viremia 4-7 d post-infection [112]. SBV
can both persist in and cross the placenta to replicate in the fetus
itself [113]. Depending on the time of exposure, this may result in
abortion or severe congenital malformations causing dystocia and
the birth of non-viable calves [114,115]. A case control study on
Swiss dairy farms found that the abortion rate increased to 6.5%
in 2012 when the SBV infection started, in comparison with a rate
of 3.7% the year before [116].

While these effects on the fetus are the most obvious sign of dis-
ease, there is also evidence for adverse effects on the establishment
of pregnancy and/or early embryo development. Similar to BVDV, it
is possible that SBV infection during early pregnancy may disrupt
IFNT production, thus compromising the survival of the conceptus.
Like BVDV, SBV uses a non-structural protein (in this case NSs) that
degrades cellular RNA polymerase II, resulting in the inhibition of
type I IFN production and an increase in virulence [ 117]. The impact
of the 2011 epidemic on the productivity of dairy cattle in the
Netherlands and parts of Germany was assessed at the herd level
in a study by Veldhuis et al. [118], who compared milk production,
fertility, and mortality during the epidemic with those from an ear-
lier reference period. In both countries, there was a small but
demonstrable decline in fertility parameters during the epidemic,
including a significant increase in the number of repeat insemina-
tions required and a decrease of about 5% in the 56-day non-
return rate (from 61.5% to 55.7%). A further analysis was under-
taken based on the effects of SBV on Swiss dairy cows [119]. This
was analyzed at the individual animal level and similarly found that
the number of inseminations per cow was higher during the epi-
demic for cows showing clinical signs of infection in comparison
with non-clinical animals from case and control herds. In this study,
the non-return rate was not affected, although this may have been
influenced by farms with affected animals stopping their services
during the period of active infection.

6. Bluetongue virus

Bluetongue virus (BTV) is an important Orbivirus virus infection
of both domestic and wild ruminants. Its geographical distribution
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is primarily dependent on the distribution of Culicoides midges,
which are the insect vectors [120]. Many serotypes of BTV exist,
including the BTV-8 strain, which is currently circulating in Europe
[121]. In addition to potentially causing high morbidity and mor-
tality and reduced milk production, BTV affects reproductive per-
formance in dairy cows [122,123]. The virus can cross the
placenta, and bovine fetuses infected before 130 d of gestation
develop fatal malformations of the central nervous system [124].
Later studies on BTV-8 also found a higher incidence of congenital
malformations in newborn calves [122]. Cows that were seroposi-
tive for BTV in a Californian study were significantly older at first
calving [125]. Fetal mortality increased during an outbreak of
BTV-8 in Belgium in 2007 [126]. An early epidemiological study
provided evidence for lower conception rates and longer calving-
to-conception intervals in cattle [ 124]. More recently, this was con-
firmed from data obtained after an outbreak of BTV-8 in the
Netherlands [127]. This study found that infected cows were five
times more likely to return to service within 56 d after their first
artificial insemination (Al) and required 1.7 times more insemina-
tions. Using a different analytical approach, Nusinovici et al. [123]
provided evidence that French cows infected with BTV-8 experi-
enced reduced fertility if they had been inseminated from four
weeks before until five weeks after the date of disease detection
within the herd. Together, these studies provide good evidence
that BTV-8 infection prevents initial conception and/or has an
adverse effect on early embryos.

Experimental infection of pre-implantation cattle embryos was
only cytopathic in embryos with damaged zona pellucidae; there
was no evidence of BTV transmission to the early embryo in
viremic donors [128]. Days 8-9 hatched blastocysts were, how-
ever, susceptible to BTV-8 infection, showing growth arrest and
increased apoptosis [129]. There is again evidence that BTV has
the ability to inhibit IFN synthesis. In this case, viral NS4 protein
is able to counteract the host’s immune response by downregulat-
ing the expression of type I IFN and ISGs [130]. As discussed above
for BVDV, this may potentially negate the signals normally
associated with the maternal recognition of pregnancy.

7. Conclusions and future developments

This literature review confirms that many common viral infec-
tions of cattle have adverse effects on dairy cow fertility. Abortions
and fetal abnormalities are easy to quantify, although in many
cases the causal factor remains unknown. In contrast, reductions
in conception rates are much more difficult to detect reliably.
The effects are dependent on the exact stage of the reproductive
cycle when the animal becomes infected, and are influenced by
herd and season. Some viruses can remain latent, and reactivation
around calving is likely in association with the metabolic stress of
early lactation. Others have synergistic actions with other infec-
tious agents, either directly or indirectly by promoting immuno-
suppression in the host. This may interrupt reproductive
processes such as ovulation and implantation as well as predispos-
ing the animals to bacterial infections of the reproductive tract.
Determination of significant effects on fertility rates in the field
is dependent on having significant power in the study to detect
potentially small changes. It is also complicated by our inability
to capture reliable data on many other factors that influence
fertility, such as the previous disease and vaccination history and
the current metabolic status of individual cows. In vitro studies
using primarily uterine endometrial cells and embryos have pro-
vided useful evidence on mechanisms of action. However, very
few studies have made a thorough examination of the effects on
the reproductive tract of viral infection in vivo. This is understand-
able, given the costs involved and the practicalities of maintaining
infectious cows in containment facilities over a sufficient period of

time. Despite these limitations, the available data do strongly sug-
gest that viral disease plays a key but currently under-recognized
role in reducing cow fertility.

Given the importance of viral diseases in global cattle produc-
tion, attempts to eradicate—or at least reduce—the prevalence of
such diseases is vital. Rigorous quarantine procedures can help
prevent the spread of novel diseases between countries. National
measures can incentivize farmers to increase their use of regular
testing and vaccination. Local regulatory organizations must
remain vigilant to detect novel viral diseases or variant strains of
existing viruses as rapidly as possible after their emergence. Dis-
ease monitoring may also be facilitated by new technologies, such
as a computational approach to pathogen discovery based on
bioinformatic analysis of RNA sequencing data from whole blood
[131]. Such measures should pay dividends by improving concep-
tion rates and longevity within the dairy herd.
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