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A number of brain research projects have recently been carried out to study the etiology and mechanisms
of psychiatric disorders. Although psychiatric disorders are part of the brain sciences, psychiatrists still
diagnose them based on subjective experience rather than by gaining insights into the pathophysiology
of the diseases. Therefore, it is urgent to have a clear understanding of the etiology and pathogenesis of
major psychiatric diseases, which can help in the development of effective treatments and interventions.
Artificial intelligence (AI)-based applications are being quickly developed for psychiatric research and
diagnosis, but there is no systematic review that summarizes their applications. For this reason, this
study briefly reviews three main brain observation techniques used to study psychiatric disorders—
namely, magnetic resonance imaging (MRI), electroencephalography (EEG), and kinesics-based diag-
noses—along with related AI applications and algorithms. Finally, we discuss the challenges, opportuni-
ties, and future study directions of AI-based applications.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to the Global Burden of Disease Study in 1990 and
2010 [1], the main causes of the fourth largest disease burden mea-
sured in disability-adjusted life years (DALYs) are mental and
substance-use disorders [2,3], which are jointly considered to be
the leading cause of lived-with disability worldwide.

A number of brain research projects have recently been carried
out to study the etiology and mechanisms of psychiatric disorders
[4], which could help improve brain interventional and clinical
treatment capabilities [5]. For example, the United States proposed
the Brain Research through Advancing Innovative Neuroethology
initiative [4] in 2013, the European Union initiated the Human
Brain Project (HBP) [4] in 2013, and Japan started the Japan Brain
Bank Network project in 2014 [5]. China launched the Chinese
Brain Project in 2016, which covers both basic research for the neu-
ral mechanisms of brain disease and clinical research on brain dis-
ease [6].

Although psychiatric disorders are a research area in brain
science, most psychiatrists still diagnose them based on subjective
experience rather than by gaining insights into the pathophysiol-
ogy of the diseases [7,8]. As a result, psychiatrists may misdiagnose
diseases and incorrectly delineate distinct paths of treatment.
Therefore, it is urgent to develop a clear understanding of the eti-
ology and pathogenesis of major psychiatric diseases in order to
develop effective treatments and interventions for major brain
diseases.

In recent years, artificial intelligence (AI)-based applications
have rapidly been developed for psychiatric research and diagnosis
[9–15]. For example, Jan et al. [16] proposed an AI system to mon-
itor depression that can predict Beck Depression Inventory II (BDI-
II) scores from vocal and visual expressions. In addition, Wen et al.
[17] extracted multi-type gray–white matter features based on
multimodal neuroimaging and used a multicore learning classifier
to assign weights to the kernel functions of each feature.

However, to the best of our knowledge, there is no systematic
review that illustrates the use of these AI-based applications for
orders,
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psychiatric research and diagnosis. Thus, we will briefly review
commonly used AI-based applications for psychiatric disorders
and illustrate how to apply AI technology to explore biomarkers
for psychiatric disorders.

2. Major AI-related techniques for psychiatric disorder
diagnosis

AI techniques [18,19] are being progressively introduced for
psychiatric disorders. Brain structure and function are the most
important biological phenotypes and key diagnostic biomarkers
for psychiatric disorders [20]. Therefore, AI-related techniques that
can obtain detailed information to characterize different psychi-
atric disorders should be used for the diagnosis of these diseases
[16].

Fig. 1 describes three major techniques for brain observation in
the study of psychiatric disorders: magnetic resonance imaging
(MRI), electroencephalography (EEG), and kinesics diagnosis [21].
We will subsequently discuss their related AI-based applications.

2.1. Magnetic resonance imaging

MRI is the predominant technique for behavioral and cognitive
neuroscience since it can explore obvious psychiatric abnormali-
ties that cannot be detected by computed tomography (CT) [22–
25]. At present, commonly used AI technologies for brain imaging
include multitask/multimodal learning, classification, kernel, and
deep learning methods [26], which can help in effectively analyz-
ing existing disease data for key biomarkers exploration and
increasing the capacity for clinical brain disease treatment [24,25].

Although many AI-related applications have been developed to
assist MRI [26–28], this section only focuses on convolutional
neural networks (CNNs) [29] and deep neural networks (DNNs)
[30–32], which are employed in neuroimaging studies to elucidate
the neural correlates of psychiatric disorders [30,33–36]. For exam-
ple, Hosseini-Asl et al. [37] proposed a new depth-supervised
adaptive three-dimensional (3D) CNN that can automatically
extract and recognize Alzheimer’s disease features, capture
changes caused by Alzheimer’s disease, and use these networks
to analyze and recognize MRI images. In addition, Koyamada
et al. [38] built up a subject-transfer decoder using a DNN. It is
trained by a functional MRI (fMRI) dataset in the Human Connec-
tome Project (HCP), the decoder of which has been assessed as hav-
ing higher decoding accuracy than other methods.
Fig. 1. Major observation techniq
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Although MRI is currently an important tool for diagnosis in
general, it still has several major shortcomings. First, it requires
extensive computer configurations. Second, big data is needed to
optimize the key parameters of the model. Third, the imaging pro-
cess takes a long time. Thus, the question of how to improve the
current AI-based applications to solve these problems for MRI is
an important future research direction.

2.2. Electroencephalography

Diagnosis and treatment of human brain and nervous system
diseases can be performed by detecting and recording human
EEG signals. EEG signals are critical for both understanding how
the human brain processes information and diagnosing psychiatric
disorders [39]. In comparison with CT and MRI, EEG has a higher
temporal resolution [40]. Therefore, despite the limited spatial res-
olution of EEG, it is still a valuable tool for research and diagnostics,
especially when specified studies require time resolution in the
millisecond range, such as studies on anxiety, psychosis, and
depression [41].

Here, we focus on describing the application of the classical
machine learning algorithm for EEGs. Since EEG data is represented
by a graph, it is always analyzed by AI-based models [42–45]. For
example, Field and Diego [46] employed linear discriminant anal-
ysis to process EEG data and obtained 67% accuracy when classify-
ing normal patients and patients with depression. In addition,
Iosifescu et al. [47] employed a support vector machine (SVM) to
process resting-state EEG data for 88 subjects at the midpoint of
the eight-lead connection at the forehead and achieved a 70% clas-
sification accuracy. Moreover, Bisch et al. [48] used logistic regres-
sion (LR) to classify a nine-lead EEG for depression with an 83.3%
classification accuracy.

Although EEGs can simplify the data acquisition process, they
encounter information loss. More importantly, too many undeter-
mined factors in EEG data result in a large amount of noise in the
classification decision. Therefore, developing a machine learning
model that is more suitable for EEG data is a future research
direction.

2.3. Kinesics

Kinesics data (including behavioral [49], facial [50], and other
data [48]) is becoming very important for the study of the
pathogenesis, development transition, and diagnosis assistance of
ues for psychiatric disorders.

rtificial Intelligence Applications and Algorithms for Psychiatric Disorders,
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psychiatric disorders. AI-based technologies are widely employed
to analyze such data to help diagnose and predict psychiatric
disorders.

Many AI-related applications have recently been developed for
kinesics-based diagnoses [50–52]. For example, Wang et al. [53]
proposed a computational approach to develop probabilistic facial
expression profiles for video data, which can automatically quan-
tify the difference in emotional expression between patients with
psychiatric disorders (e.g., schizophrenia) and healthy controls
[16]. Zhu et al. [54] implemented automatic diagnosis of depres-
sion by means of a deep learning algorithm, which significantly
improved the depression prediction performance by reducing the
mean absolute error by 30.3%. In addition, Kaletsch et al. [55]
examined differences in emotional expression by body movements
between patients with major depressive disorder (MDD) and their
healthy counterparts, and demonstrated that patients with MDD
are more negative than their healthy counterparts.

In addition, Dhamecha et al. [56] proposed an algorithm to
investigate human and machine performance for recognizing/ver-
ifying disguised faces [57]. The method can identify disguised face
patches and account for this information to obtain improved
matching accuracy by automatically localized feature descriptors.
The experiments showed that the proposed algorithm can not only
outperform popular commercial systems, but also evaluate the dis-
guised face images when they are matched.

In general, with the development of AI and precision medicine,
collecting and analyzing kinesics data will become easier, cheaper,
and more convenient. Moreover, kinesics data could help to
improve models’ predictive accuracy, reduce the misdiagnosis rate,
and assist psychiatrists in diagnosing and treating psychiatric
disorders.
3. Artificial intelligence algorithms

3.1. Bayesian model

In AI, the naïve Bayes classifier [58–60] is a general term for a
classification algorithm. The naïve Bayesian method is a classifica-
tion method based on Bayes’ theorem and characteristic condition-
independent hypothesis.

Recent studies have often employed Bayesian models to diag-
nose psychiatric disorders. For example, the Strüngmann Forum
on Computational Psychiatry [61–63] proposes using Bayesian
inference to connect underlying causes (genetics and sociological
phenomena [15,64]), latent hypothesized theoretical constructs,
and symptoms [65]. Furthermore, Grove et al. [66] used a Bayesian
model comparison approach to explore the relationship between
visual integration and general cognition. The results showed that
a Bayesian model can draw a comparison of the disease categoriza-
tion systems and have common psychopathological information
from diagnostic groups.
3.2. Logistic regression

In statistics, logistic models [67,68] (or logit models) are widely
used statistical models, and LR is an important AI algorithm
[68,69]. Recent studies often employ LR models to diagnose psychi-
atric disorders. For example, Hagen et al. [70] evaluated the asso-
ciations between psychological distress and two cognitive
screening tools by means of a LR method. The results demonstrated
that performance-based assessment could reduce the impact of
psychological distress on cognitive screening.

In addition, Barker et al. [71] employed models of multivariable
LR to predict 30-day psychiatric readmission. Their findings are
Please cite this article as: G.-D. Liu, Y. C. Li, W. Zhang et al., A Brief Review of A
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considered to be crucial predictors for psychiatric readmission,
and have provided a better way of readmission prediction.

Shen et al. [72] generated a risk stratification model to obtain
the odds ratio (OR) of psychiatric comorbidities by a classification
and regression tree method. Using the LR method, the OR of psy-
chiatric comorbidities was calculated between subjects with and
without borderline personality disorder.

In general, the accuracy of LR models is so high that they are
commonly applied in clinical practice.

3.3. Decision tree

A decision tree [73] is a flowchart-like diagram that shows the
various outcomes from a series of decisions, including chance
event outcomes and utility. Decision trees are one of the most
widely and broadly used algorithms for supervised classification
learning. In AI, a decision tree is a predictive model that represents
a mapping between object properties and object values. Most mod-
ern decision tree learning algorithms adopt a purity-based heuris-
tic [74]. Information gain, gain D;Xð Þ, is defined by Eq. (1) [75,76].

gain D;Xð Þ ¼ info Dð Þ �
X

x

Dxj j
Dj j info Dxð Þ ð1Þ

where D is a set of training instances, X is an attribute, x is its value,
Dx is a subset of D consisting of the instances with X = x, and info Dð Þ
is defined as shown in Eq. (2).

info Dð Þ ¼ �
Xm

i¼1

pilog2 pið Þ ð2Þ

where pi is estimated by the percentage of instances and m is the
number of classes.

Next, we detail two commonly used decision tree applications
for psychiatric disorders.

Carpenter et al. [77] used the decision tree algorithm to test
whether individual Preschool Age Psychiatric Assessment (PAPA)
items can predict whether a child is likely to have generalized anx-
iety disorder (GAD) or separation anxiety disorder (SAD). They
used a decision tree to identify children who were on the brink
of experiencing anxiety disorder, and their results showed that
the decision tree can achieve accurate prediction up to 96% for both
GAD and SAD.

With a decision tree, Scattler et al. [78] analyzed data from the
Spence Children’s Anxiety Scale (SCAS) and SCAS-P obsessive–com-
pulsive disorder subscales, and worked out two screening algo-
rithms to diagnose obsessive–compulsive disorder from a
combined clinical and community sample of children and families.
The results showed that the algorithms that reduced the number of
SCAS-P items needed to make a diagnosis of obsessive–compulsive
disorder diagnoses up to 67%–83% without sacrificing the nature
relative to the full subscales.

3.4. Support vector machines

The SVM is a current supervised learning method, the decision
boundary of which is the maximum margin hyperplane for solving
learning samples [79]. It can be described as follows: Start from a
training dataset of n points of the form ~xi; yi

� �
; . . . ; ~xn; yn

� �
, where

yi 2 �1;1f g is used to denote the class labels. Each ~xi is a p-
dimensional real vector. The goal is to find the maximum margin
hyperplane that divides the group of points~xi for which yi ¼ 1 from
the group of points for which yi ¼ �1.

SVM models have been commonly used for diagnosing psychi-
atric disorders. For example, in order to describe users’ situations,
Peng et al. [80] employed a multi-kernel SVM-based model to
locate potential users who might suffer from depression by
rtificial Intelligence Applications and Algorithms for Psychiatric Disorders,
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extracting three social methods (user microblog text, user profile,
and user behaviors). Based on a multiclass SVM, Al-Shargie et al.
[81] put forward a discriminant analysis method. The results
showed that the method could discriminate between different
stress levels for EEG with a 94.79% average classification accuracy.
3.5. Deep learning

Classic machine learning methods, such as the Bayesian model
and SVM, have been widely employed in psychiatry and neuro-
science [64–66] studies for a long time. At present, deep learning
[82–84], which is a hot machine learning research direction, out-
performs the aforementioned AI models by a considerable margin
[85–87].

Deep learning refers to a set of algorithms on a multi-layer neu-
ral network that uses various machine learning algorithms to solve
various problems such as images and text. Combined with low-
level features, deep learning can develop more abstract high-
level attribute categories or features that can discover distributed
feature representations of data. Weight updating can be solved
by the stochastic gradient descent method using the following
formula:

Dwðt þ 1Þ ¼ DwðtÞ þ g
@C
@w

ð3Þ

where DwðtÞ is the weight of time t, g is the learning rate, and C is
the cost function. The choice of this function is related to the type of
learning (such as supervised learning, unsupervised learning, and
enhanced learning) and the activation function.

Here, we detail two commonly used deep learning applications
for psychiatric disorder diagnosis.

By leveraging a DNNs on the TensorFlow framework, Khan et al.
[88] proposed a computational tool (integrated mental-disorder
GEnome score, or iMEGES) to analyze the whole genome/exome
sequencing data on personal genomes. Based on the deep learning
framework, this tool creates prioritized gene scores for psychiatric
disorders [89]. The findings revealed that the property of this tool
are better than that of competing approaches when a large training
dataset is available.

In addition, Heinsfeld et al. [39] applied deep learning algo-
rithms on a large brain imaging dataset in order to identify patients
with autism spectrum disorder based solely on the patients’ brain
activation patterns. The findings revealed that 70% accuracy was
achieved in the dataset, and that deep learning methods can clas-
sify large datasets better than other methods. Furthermore, the
results showed the promise of deep learning for clinical datasets
and illustrated the future application of AI in the identification of
mental disorders.

Although extremely advanced performance has been demon-
strated in several fields, deep learning has been under close con-
cern for its lack of transparency during the learning and testing
processes [90–92]. For example, deep learning has been referred
to as a ‘‘black box”. In comparison, techniques such as LR are sim-
ple and easy to understand.

For this reason, recent endeavors in interpretable DNNs are
introduced here. For example, in terms of CNN visualization, Sprin-
genberg et al. [93] proposed a deconvolution approach that can be
used to acquire features from deep learning. Kindermans et al. [94]
proposed a method to visualize the regions in the input image that
contribute most to the CNN decision-making process. In a study on
interpreting neural networks with traditional machine learning
models, Zhang et al. [95] proposed a method to interpret the
convolution layer characteristics of pretrained CNNs, and used
an explanatory graph to reveal the knowledge level hidden in
the CNN. In short, a good AI model should be interpretable,
Please cite this article as: G.-D. Liu, Y. C. Li, W. Zhang et al., A Brief Review of A
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generalizable, and more adaptive, and should learn from data,
rules, and interactions.
4. Discussion

Considering the interaction between the environment and mul-
tiple susceptibility genes, the process of diagnosing psychiatric dis-
orders is described as follows: first, micromolecular variations
[96,97], such as protein expression [98,99], are investigated by
EEG; second, changes in brain structure, specific neural circuits,
and brain function are examined by MRI; and finally, when
patients have clinical phenotype switches, kinesics data is used
to identify behavioral changes [100]. In particular, the discovery
of these changes at the structural, functional, and behavioral levels
can not only help in diagnosing psychiatric disorders at an early
stage, but also assist in exploring the key biomarkers for diagnos-
ing psychiatric disorders.

However, the clinical symptoms of psychiatric disorders are
complex and diverse. Diagnosing psychiatric disorders is one of
the more labor-intensive tasks in medicine, and thus precisely falls
within the area of machine learning. The general medical system
cannot always accurately and rapidly diagnose patients. The con-
tinuous development of clinical examination technology and AI
technology can not only greatly reduce costs, but also obtain assis-
tant diagnosis results in real time. AI can help doctors to provide
more accurate and efficient diagnoses [101–103], thus improving
the level of clinical diagnoses of neuropsychiatric diseases.

The typical application of AI in this context is in diagnosing dis-
eases based on DNNs [104]. DNNs can accurately predict the risk of
disease or abnormal lesions through a deep learning model based
on the relevant disease data. In the literature, although the analytic
performance of deep learning for diagnosing psychiatric disorders
is better, there are also some problems, such as: ① higher require-
ments for computer configurations; ② higher requirements for
data quantity (the experimental performance is better only when
there is more data); and ③ more time being consumed by experi-
ments. These problems are worthy of further study and discussion
in the future.

In short, although AI has made great progress in diagnosing psy-
chiatric disorders, there are still many research areas for the
improvement of AI-based applications [105]. First, since current
research is based on classic shallow learning algorithms, it is diffi-
cult to share and use information among high-dimensional fea-
tures. Thus, deep learning is a future study direction. Second, it is
necessary to employ unsupervised learning to perform automatic
annotation for unlabeled psychiatric disorder imaging data. Finally,
because the current AI-based model can only process homologous
datasets, its generalizability is insufficient. Therefore, migration
learning, multi-view learning, and ensemble learning [106] will
be used to process big psychiatric disorder data in the distant
future.
5. Conclusion

At present, MRI, EEG, and kinesics are important methods and
references in the diagnosis of psychiatric disorders. With the appli-
cation of AI technologies in medicine becoming increasingly wide-
spread, traditional artificial diagnostic methods are gradually being
eliminated, while the role of MRI, EEG, and kinesics in computer-
aided diagnosis methods is becoming increasingly important.
Therefore, this study mainly reviewed the application of MRI,
EEG, and kinesics by providing the following: ① a brief introduc-
tion of the process of psychiatric disorder diagnosis and an analysis
of the main data types generated therein;② an introduction of the
important role of AI technology in the diagnosis of psychiatric
rtificial Intelligence Applications and Algorithms for Psychiatric Disorders,
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disorders, and its application performance; and ③ a summary and
analysis of the methods proposed for diagnosing diseases based on
the current hot topic of deep learning.
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