
Engineering 6 (2020) 936–943
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Mechanical Engineering—Article
Mechanical Analysis and Performance Optimization for the Lunar Rover’s
Vane-Telescopic Walking Wheel
https://doi.org/10.1016/j.eng.2020.07.009
2095-8099/� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: zrh1981819@126.com (R. Zhang).
Lu Yang a,b,d, Bowen Cai a,b, Ronghui Zhang c,d,⇑, Kening Li d, Zixian Zhang e, Jiehao Lei f, Baichao Chen d,g,
Rongben Wang d

a Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
bNational Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
cGuangdong Key Laboratory of Intelligent Transportation System, School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China
dCollege of Transportation, Jilin University, Changchun 130025, China
eDepartment of Mechanical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
fArmour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
gChina Academy of Space Technology, Beijing 100029, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 October 2018
Revised 28 September 2019
Accepted 29 June 2020
Available online 15 July 2020

Keywords:
Intelligent vehicle
Vane-telescopic walking wheel
Performance optimization
Vane spring
Lunar rover
It is well-known that optimizing the wheel system of lunar rovers is essential. However, this is a difficult
task due to the complex terrain of the moon and limited resources onboard lunar rovers. In this study, an
experimental prototype was set up to analyze the existing mechanical design of a lunar rover and
improve its performance. First, a new vane-telescopic walking wheel was proposed for the lunar rover
with a positive and negative quadrangle suspension, considering the complex terrain of the moon.
Next, the performance was optimized under the limitations of preserving the slope passage and minimiz-
ing power consumption. This was achieved via analysis of the wheel force during movement. Finally, the
effectiveness of the proposed method was demonstrated by several simulation experiments. The newly
designed wheel can protrude on demand and reduce energy consumption; it can be used as a reference
for lunar rover development engineering in China.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Exploring the moon has become a globally important task. One
of the most important tasks in moon exploration is lunar landing,
such as those achieved by Chang’e 3 (China) and Apollo 13 (USA).
In the future, manned lunar landings will be carried out (China:
2025 [1–3]; USA: restart Apollo [4]). Here, the key technique lies
in the trafficability characteristic of the lunar rover. That is, the
newly designed lunar rover should be able to walk in the complex
and harsh environment of the lunar surface. For example, the sur-
face temperature of the moon can reach 150 �C in the daytime and
drop as low as �180 �C at night, which makes the wheel technol-
ogy used on earth difficult to use on the moon.

For this purpose, the wheel should have the following features:
① The lunar rover should be designed with high traction perfor-
mance and carrying capacity [5–9]; and ② the rover wheel should
be able to traverse obstacles [10]. There is an irregular distribution
of rocks, craters, and slopes of different sizes and shapes on the
surface of the moon [11–16]. The particle size and softness of lunar
soil vary greatly [17].

In this regard, many kinds of wheel structure have been
designed. Three have successfully landed on the moon: the elastic
wheel of the former Soviet Lunokhod [18], the spring-griddle net
wheel used by the American Apollo lunar roving vehicle (LRV)
[4], shown in Fig. 1, and the Chinese YuTu [1,19–21], shown in
Fig. 2. Other research results on wheel structure include the
cylinder-conical wheel developed by Harbin Institute of Technol-
ogy and the grip-hook and intelligent variable-diameter wheels
designed by Beihang University, which have strong adaptability
with the surface of the moon (Fig. 3) [22–24].

Of these existing designed wheels, the spring-griddle net wheel
is easily deformed when the load is extremely large, the cylinder-
conical wheel and the intelligent variable-diameter wheel are
liable to fracture upon impact, and the grip-hook wheel has a
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Fig. 1. The Apollo LRV.

Fig. 2. YuTu and spring-griddle net wheel.

Fig. 3. The intelligent variable-diameter wheel.

Fig. 4. Structure of vane-telescopic walking wheel.
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complex structure and low reliability, so it is easily damaged. Fur-
thermore, although these wheels have a strong ability to surmount
obstacles, they are weak in power-consumption control and cannot
meet the complex requirements of future lunar exploration pro-
jects [4]. Therefore, it is necessary to design new wheels with bet-
ter balance.
To resolve these problems, a newwheel system is proposed. The
system is based on the vane-telescopic walking wheel (Fig. 4),
which was designed by the Intelligent Vehicle Group of Jilin
University. This model was selected as the basis of our prototype,
as it is suitable for lunar soft soil [25,26]. The most important merit
of our new wheel system is that the wheel vane length can be
adjusted automatically according to the road surface (i.e., softness
and slope) and obstacles (i.e., size) [18].

For the vane-telescopic walking wheel, the longer the wheel
vane is, the better the wheel passing performance is. Meanwhile,
the greater the wheel rolling resistance is, the greater the energy
consumption of the wheel is. Therefore, the ideal extension condi-
tion is for the wheel vane to protrude according to the terrain need,
thus reducing the energy consumption [27].

In this study, a new wheel system is designed based on the fol-
lowing contributions, in order to pass through all kinds of road
conditions on demand with the lowest energy consumption:

(1) A new vane-telescopic walking wheel is proposed for the
lunar rover with a positive and negative quadrangle suspension.

(2) The parameters of the vane-telescopic walking wheel design
are optimized.

(3) The prototype is evaluated in a simulated lunar soil
environment.

(4) A new lunar rover prototype vehicle is designed and tested
initially with the new wheel.

The remainder of this paper is organized as follows: Section 2
introduces the wheel force analysis for lunar rover wheels.
Section 3 analyzes the parameter optimization of the vane-
telescopic walking wheel design. Section 4 deals with the proto-
type evaluation in the simulated lunar soil environment. Section 5
concludes this paper and suggests several possible future works.
2. Force analysis for lunar rover wheels

Before optimizing the vane-telescopic walking wheel, the lunar
rover wheel is analyzed based on the actual conditions on the lunar
surface; the dimension of the designed wheels can then be deter-
mined based on the analysis results [28]. The paper is based on a
lunar rover model with a positive and negative quadrangle suspen-
sion, which was proposed by the Intelligent Vehicle Group of Jilin
University.

In Fig. 5, L1 = 453.3 mm, L2 = 191.65 mm, L3 = 212.1 mm,
L4 = 218.72 mm, L5 = 145.05 mm, L6 = 431.86 mm,
L7 = 142.24 mm, L8 = 342.6 mm, L9 = 141.4 mm, L10 = 354.2 mm,
L11 = 400.1 mm, L12 = 135 mm, c1 = 38.31�, c2 = 41.76�,
c3 = 53.62�, c4 = 68.29�, c5 = 17.36�, c6 = 44.9�, c7 = 42.3�,



Fig. 6. The force of the mobile system on a road with a slope angel of hs.

Table 1
Slope resistance FRs and pressure P with varying slope hs.

hs (� ) FRs1/P1 (N) FRs2/P2 (N) FRs3/P3 (N)

0 0/30.6 0/36.9 0/30.6
5 2.4/27.8 3.2/36.3 2.9/33.6
10 4.4/24.9 6.2/35.1 6.5/36.6
15 5.9/21.9 8.9/33.1 10.6/39.7
20 6.9/18.9 11.0/30.3 15.7/43.0
25 7.5/16.1 16.8/36.1 21.8/46.7
30 7.9/13.7 11.5/20.0 29.6/51.3

Table 2
Terzaghi bearing coefficients.

Fig. 5. Suspension rod angles and key suspension dimensions of the model.
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a1 = 938.3 mm, a2 = 359.5 mm, a3 = 307.8 mm, and a4 = 179.1 mm.
Here, Li is the length of suspension; whose horizontal angle is
represented by ci; while ai means the length between two points.
According to the design requirements of the mobile system, the
wheel radius R is 150 mm, the single wheel mass is 3.5 kg, and
the vehicle mass is 120 kg. Under the lunar gravity field, the weight
of front (W1), middle (W2), and rear wheels (W3),
W1 = W2 = W3 = 5.7 N, and gravity on one side of the load platform
G = 80.85 N.

The key road condition for a lunar rover is slope. In many of the
road conditions that a lunar rover must pass, the slope is the most
intuitive and effective factor to reflect the wheel force condition.
When a lunar rover is climbing, the wheel force condition is the
most serious parameter, and the traction performance requirement
for the wheel is the highest priority [29]. In this paper, the wheel
force analysis is carried out with a slope angel of hs degrees (Fig. 6).

The road’s supporting force Fv and the wheel’s pressure P are a
pair of counterforces that have equal values and opposite direc-
tions. The friction force Fp and the slope resistance FRs are also a pair
of counterforces. Therefore, the slope resistance and the pressure
on the road of the lunar rover can be obtained, as shown in Table 1.
u (� ) N0
c N0

c

31 18 4
33 20 5
35 23 7
37 27 10
39 32 14
41 40 20
3. Optimizing parameters determination of the vane-telescopic
walking wheel

The most difficult challenge is the complex lunar environment,
which consists of irregular stones and craters, varying slopes, and
lunar soil with varying granularity and softness. Traditional wheels
cannot fully deal with such an environment because their traction
ability is insufficient to pull the lunar rover in soft lunar soil. To
resolve this problem, a new type of wheel is designed that can
automatically retract vanes according to the soil characteristics.
First, the forces between the wheels and soil are analyzed below.

3.1. Force analysis between the wheels and soil

The force of the wheel can be divided into soil thrust (ST) and
soil resistance (SR) according to the effectiveness of the force. If
the ST is greater than the SR, the wheel will move forward. Other-
wise, the wheel will rotate or remain stationary [30–33]. Here, SR
includes four kinds of resistances: soil compaction resistance
(SCR), soil bulldozing resistance (SBR), soil slope resistance (SSR),
and soil vane resistance (SVR) [34]. The details of ST and four kinds
of SR are introduced below.

3.1.1. Compaction resistance
During the wheel rolling process, the soil is extruded vertically

downward. At the same time, the soil forces the wheel to prevent
the vertical extrusion from forming the wheel compaction resis-
tance. The compaction resistance FRc can be expressed as follows
[35,36]:

FRc ¼ b1 � z0nþ1

nþ 1

� �
� kc

b1
þ ku

� �
ð1Þ

where z0 is the sinking depth of the wheel rim,

z0 ¼ 3�P
kcþb1�kuð Þ� ffiffiffi

D
p

� 3�nð Þ

� � 2
2nþ1

, kc is the cohesion modulus of the soil,

ku is the friction modulus of the soil, n is the soil deformation index,
b1 is the width of the wheel rim, D is the diameter of the wheel rim,
and P is the pressure of the wheel on the soil.

3.1.2. Bulldozing resistance
Aside from vertical compaction, soil deformation is caused by

the push forward of the wheels; this is the SBR bulldozing resis-
tance, in which the soil in front of the wheels is wave shaped
[37]. The bulldozing resistance FRb can be expressed as follows:

FRb ¼ b1 � 0:67� c � z0 � K 0
c þ 0:5� z02 � cs � K 0

c

� �
ð2Þ

where K 0
c ¼ N0

c � tan u0ð Þ	 
� cos2 u0ð Þ, K 0
c ¼ 2� N0

c=tan u0ð Þ þ 1
	 
�

cos2 u0ð Þ, u0 ¼ arctan 2=3ð Þtan uð Þ½ �, cs is the bulk density, c is the
cohesion force, and u is the internal friction angle. N0

c and N0
c are

the Terzaghi bearing coefficients, which are related to u; their val-
ues are provided in Table 2 [38–40].

3.1.3. Slope resistance
When the lunar rover climbs up a slope, the gravity in the direc-

tion of the slope creates the slope resistance [41], which can be
expressed as follows:

FRs ¼ Wi � sin hsð Þ ð3Þ
where Wi is the weight of the ith wheel and hs is the slope angle.
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3.1.4. Vane resistance
During the rolling process, the wheel vanes compress the soil

vertically, and the soil prevents the vertical extrusion force from
forming the vane compacting resistance, which is known as the
vane resistance [42]. The vane resistance FRv can be expressed as
follows:

FRv ¼ b2�b�Nnþ1�sinn 180�=Nð Þ� 1�Sð Þn�1

pnþ1�D� nþ1ð Þ �hnþ1
b � kc

b2
þku

� �

ð4Þ
where N is the number of vanes, b is the vane thickness, b2 is the
vane width, S is the slip ratio of the wheel, and hb is the inserting
depth of the vane. According to the sampling analysis of the lunar
soil [43], the soil deformation index n is usually equal to 1, so the
slip ratio index of the wheel S is n – 1 = 0. Thus, the vane resistance
is not affected by the wheel slip ratio.

3.1.5. Soil thrust of the vane
The maximum ST received by the wheel rim, Fw, can be

expressed as follows:

Fw ¼ c � Aþ P � tanu ð5Þ
where A is the contact area between the wheel rim and the soil:

A ¼ 2� b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� z0 � z02

p
.

The maximum ST received by the wheel vane, Fs, can be repre-
sented as follows:

Fs ¼ b2 � 1
2
� cs � h2

b �Nu þ q� hb �Nu þ 2c� hb �
ffiffiffiffiffiffiffi
Nu

q� �
ð6Þ

where q is the pressure stress of the wheel rim on the soil, q = P/A,
Nu is the flow value of the soil, and Nu ¼ tan2 45� þu=2ð Þ. Accord-
ing to Eqs. (1)–(6), the maximum traction force of the wheels, Fd,
can be expressed by Eq. (7).

Fd ¼ Fw þ Fs � FRc � FRb � FRs � FRv ð7Þ
Fig. 7. The position of the vane spring.
3.2. Optimizing parameters determination

Optimization of the vane spring, which is the most important
feature for the performance of the lunar rover wheel, is our key
work. In this study, the vane spring stiffness k and the spring initial
torque T0 are calculated as the optimization variables so that the
wheels can endure various road conditions while consuming the
lowest amount of energy.

The optimizing parameters include the minimum of the insert-
ing depth of the vane into soil when the wheels pass hb, the wheel
rolling resistance torque Tf, the supporting force Fv, and the wheel
friction force Fp. Some of the parameters are used as optimization
constraints, and the others are used as the input of the optimiza-
tion function. When calculating the above parameters, the follow-
Table 3
Optimization parameters of the front wheel.

Slope hs
(� )

Minimum inserting depth hb (mm) Wheel rolling

High soil passing
ability

Middle soil
passing ability

Low soil passing
ability

High soil pass
ability

0 0 0 0 631.6
5 0 0 0 55.7
10 1.2 3.2 4.7 480.2
15 5.3 9.6 12.2 412.7
20 8.7 17.0 20.1 354.9
25 14.5 22.4 29.2 331.4
30 20.3 28.5 42.8 340.0
ing road conditions are analyzed: high, medium, and low soil
passing ability; and a slope of 0�–30� [44].

By introducing the lunar soil parameters, the wheel parame-
ters, and the wheel slope resistance FRs (Table 1), we can obtain
the minimum inserting depth hb of the vane under various pass-
ing abilities of the soil and different degrees of the slope. The
wheel pressure P (Table 1) and hb obtained above are then taken
into the wheel resistance Eqs. (1), (2), and (4), and the wheel roll-
ing resistance is obtained. The resistance is multiplied by the
wheel radius R—that is, the wheel rolling resistance torque Tf.
Table 3 shows the optimization parameters of the front wheel
[45].
4. Optimization design and experiment with the new wheel

As shown in Fig. 7, vane 5 (i = 5) is located at the bottom of the
wheel, and mainly acts with the soil. Therefore, the extension of
vane 5 is considered in the following analysis. The extended
length of vane 5 can be expressed as Lo5(hs = 0�) = Loi (i = 5,
hs = 0�), where the calculation of function Lo5 is detailed in the
Appendix A. The objective function of the vane spring optimization
is as follows:

(1) The requirement of high passing ability [46]:
Lo5 hsð Þ � hb hsð Þ; hs ¼ 0�; 5�; :::; 30�.

(2) The requirement of reducing resistance and energy con-
sumption [47]:

P
Lo5 hsð Þ � hb hsð Þ½ � must be the minimum.
resistance torque Tf (N�mm) Supporting
force Fv (N)

Friction force
Fp (N)

ing Middle soil
passing ability

Low soil passing
ability

739.8 848.9 30.6 0
650.9 746.9 27.8 2.4
565.0 651.2 24.9 4.4
500.7 586.5 21.9 5.9
474.4 563.6 18.9 6.9
462.2 607.6 16.1 7.5
492.9 821.5 13.7 7.9



Fig. 8. Relationship among Lo5, Tv, and Fv for different slopes of the front wheel.

Fig. 9. Relationship between the extension length Lo5 and the inserting depth hb.
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4.1. Optimizing the design of the vane spring

The optimization parameters obtained in Section 3.2, including
Tf, Fp, Fv, and hb, are introduced into the above objective function to
obtain Eq. (8).

Lo5 hsi T fi Fpi Fvi
� � � hbi

P21
i¼1

Lo5 hsi T f i Fpi Fvi
� �� hbi


 � ¼ minimum

8><
>: ; i ¼ 1; 2; :::; 21 ð8Þ

where i represents 21 kinds of road conditions, which are composed
of various slopes (hs = 0�, 5�, 10�, 15�, 20�, 25�, and 30�) and soil
passing abilities (high, medium, and low).

hs1 T f1 Fp1 Fv1

hs2 T f2 Fp2 Fv2

..

. ..
. ..

. ..
.

hs21 T f21 Fp21 Fv21

2
66664

3
77775 ¼

0 0:8421 0 30:6
0 0:9454 0 30:6
0 1:0489 0 30:6
5 0:7409 2:4 27:8
5 0:8439 2:4 27:8
5 0:9469 2:4 27:8
10 0:6400 4:4 24:9
10 0:7445 4:4 24:9
10 0:8499 4:4 24:9
15 0:5454 5:9 21:9
15 0:6616 5:9 21:9
15 0:7758 5:9 21:9
20 0:4600 6:9 18:9
20 0:6087 6:9 18:9
20 0:6340 6:9 18:9
25 0:4051 7:5 16:1
25 0:5700 7:5 16:1
25 0:6499 7:5 16:1
30 0:3813 7:9 13:7
30 0:5695 7:9 13:7
30 0:7893 7:9 13:7

2
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3
77777777777777777777777777777777777777777777775

;

hb1

hb2

..

.

hb21

2
66664

3
77775 ¼

0
0
0
0
0
0
0:0012
0:0032
0:0047
0:0053
0:0096
0:0122
0:0087
0:0170
0:0201
0:0145
0:0224
0:0292
0:0203
0:0285
0:0428

2
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The spring stiffness k and initial torque value T0 of the front
wheel vanes are then obtained. According to this calculation, they
are k = 0.112 N�m�rad�1 (1 rad = 180�/p) and T0 = �0.038 N�m. A
type of spring can be selected for the front wheel that can ensure
the wheel’s passing performance in the complex moon environ-
ment. It can also reduce the energy consumption from the exces-
sive overhang of vanes [48–50].

4.2. Analysis of the optimization effect

In the function Lo5, the rolling resistance torque Tf and the
wheel friction Fp are always formed by Tf + R � Fp. Tf + R � Fp
can be regarded as a variable, and is called the rolling friction force
Tv. Thus, three variables in the original function Lo5 can be
expressed in the form of two variables, Tv and Fv [51]. To analyze
the mechanical properties for the front wheel optimization,
k = 0.112 and T0 = 0.038 are introduced into the function Lo5(k,
T0, Tf, Fp, Fv). The relationship between hb, Tv, and Fv can be
obtained.

Fig. 8 shows the relationship among Lo5, Tv, and Fv for different
slopes (hs = 0�, 5�, 10�, 15�, 20�, 25�, and 30�). It can be seen that the
vane does not extend when Tv and Fv are small. When Tv and Fv
reach a certain value, the vane starts to extend, and the vane
extends more with an increase of Tv and Fv [52,53]. In Fig. 8, differ-
ent colors represent different slopes; they do not coincide. This
situation is mainly caused by the change in the contact point
between the wheel and slope [54].

Fig. 9 shows the relationship between the extension length Lo5
and the inserting depth hb. There are 21 values of the inserting
depth hb. It can be seen that each value does not exceed its corre-
sponding surface, which means that hb � Lo5. This indicates that
the vane-telescopic walking wheel can smoothly pass through
the 21 kinds of road conditions [55,56]. In addition, it is clear that
the maximum among the 21 values is in contact with its corre-
sponding surface, which indicates that the wheel’s energy con-
sumption has been reduced to the lowest level.

Using the same optimization method, the spring stiffness k and
initial torque value T0 of the middle wheel are k = 0.135 N�m�rad�1

and T0 = �0.023 N�m, and those of the rear wheel are k = 0.218 N�
m�rad�1 and T0 = �0.128 N�m.
4.3. Experiments with the vane-telescopic walking wheel

To test the actual performance and reliability of the vane-
telescopic walking wheel, a prototype of the vane-telescopic walk-
ing wheel with the same dimensions was manufactured and
installed on the lunar rover prototype CJ-1 (Fig. 10). An experiment
on simulated lunar soil was carried out at the lunar surface simu-
lation test field at the China Institute of Space Technology (Fig. 11).

During the test, when the lunar rover normally runs in the soil,
the length of the wheel vane increases to maintain proper thrust,
as shown in Fig. 12(a). Then a horizontal force of 300 N is used
to pull the wheel to simulate the resistance case. The vane
continues to extend and the wheel traction is increased. The
increased traction force overcomes the horizontal force so that
the prototype can maintain the original speed, as shown in
Fig. 12(b). When the horizontal force is gradually reduced, the vane



Fig. 10. Prototype of CJ-1.
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is gradually restored to its original position, and the energy
consumption is reduced, as shown in Fig. 12(c).

The experimental results show that the optimized vane-
telescopic walking wheel can control the extension length of the
vane according to the terrain resistance. Moreover, the energy con-
sumption of the lunar rover can be effectively controlled when it
passes through a complex road.
5. Conclusions

In this paper, an effective vane-telescopic walking wheel is pro-
posed. This new walking system design method can provide a use-
ful reference for solving the issues of trafficability and climbing
ability for a lunar rover in complex terrain on the moon, while mini-
mizing energy consumption. This was achieved through numerical
simulation and system testing. First, we set up an experimental
prototype, named CJ-1, to analyze the existing mechanical design.
Based on the CJ-1 lunar rover prototype, a new vane-telescopic
walking wheel was proposed with a positive and negative
Fig. 12. The vane extension. (a) The length of the vane increases when running in the soil
(c) the vane is restored when the horizontal force is reduced.

Fig. 11. Simulation on
quadrangle suspension, especially designed for the complex terrain
on the moon. Second, we analyzed the wheels’ force for the lunar
rover. Furthermore, the parameter optimization of the vane-
telescopic walking wheel was analyzed and simulated. Finally, a
realistic moon environment was set up to demonstrate the effec-
tiveness of the proposed wheel system.

In future work, we aim to establish a more realistic and compre-
hensive test ground to simulate the lunar surface environment.
More types of lunar soil can be added to allow the experiment to
comprehensively simulate the real driving situation of wheels on
the lunar surface. Another possible extension is to increase the
bearing capacity of the vane-telescopic walking wheel for future
manned lunar rovers. The Chang’e project is an important part of
the National Key Project, and provides a reference for the new
lunar rover design [57–61]. We would also like to have an
academic exchange with researchers from all over the world.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
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