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Thermomechanical, physical, and chemical processes in energetic materials (EMs) during manufacturing
and processing or under external stimuli such as shock compression, involve multiple temporal and spa-
tial scales. Discovering novel phenomena, acquiring new data, and understanding underlying mecha-
nisms all require temporally and spatially resolved diagnostics. Here, we present a brief review of
novel diagnostics that are either emerging or have existed but rarely been applied to EMs, including
two-dimensional (2D) and three-dimensional (3D) X-ray imaging, X-ray diffraction, coherent X-ray
diffraction imaging, small angle X-ray scattering, terahertz and optical absorption/emission spectroscopy,
and one-dimensional (1D) and 2D laser-based velocity/displacement interferometry. Typical spatial
scales involved are lattice (nanometer and micrometer) and typical temporal scales (femtosecond,
picosecond, nanosecond, microsecond, and millisecond). The targeted scientific questions and engineer-
ing problems include defects, strengths, deformations, hot spots, phase changes, reactions, and shock sen-
sitivities. Basic principles of measurement and data analysis, and illustrative examples of these are
presented. Advanced measurements and experimental complexities also necessitate further development
in corresponding data analysis and interpretation methodologies, and multiscale modeling.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Energetic materials (EMs) store large quantities of chemical
energy, which can be released rapidly upon thermal or mechanical
stimuli [1–4]. According to the amount of stored chemical energy
and release rate, EMs are generally classified into explosives (pri-
mary or secondary explosives), propellants, and pyrotechnics
[3,5]. Sustained interest in EMs has been driven by their wide civil
and military applications as well as basic science [6]. A thorough
understanding of mechanical, physical, and chemical processes in
EMs is required not only to predict and control their performance,
but also to address increasing environmental and safety concerns
of EMs [1,7].

Thermomechanical, physical, and chemical processes in EMs
during manufacturing and processing or under external stimuli
such as shock compression, involve multiple temporal and spatial
scales [6,8]. Microstructures (lattice defects, voids, cracks, inter-
faces, etc.) created during manufacturing and processing, ranging
from sub-nanometers to millimeters [9,10], can impact their
responses to external stimuli, and their subsequent chemical kinet-
ics and overall performance [11,12]. Under thermal or mechanical
stimuli, such microstructures may lead to strain, stress, or heating
localizations, resulting in local chemical reactions (‘‘hot spots”)
[13–16]. Upon external stimulation, mechanical and physical
(e.g., plastic deformation [17,18], phase transition [19,20], and
hot spot formation) and chemical (e.g., chemical kinetics [12,21]
and carbon condensate formation [22,23]) processes in EMs span
temporal scales from femtoseconds to microseconds, and spatial
scales from single molecules and lattices to micrometers or larger.
For example, shock-induced chemical initiation usually occurs at
the molecular level and sub-picosecond scale [15,24–28]. Up to
the mesoscale, the propagating shock wave interacts with the com-
plex microstructure of an EM, yielding phase transitions and hot
spots; the shock-to-detonation transition (SDT) [29] is manifested
at the macroscale. The temporal scales in manufacturing and pro-
cessing and external stimulation involve 100 fs in laser ablation
[30,31], 100 ns in plate impact loading [32–34], 100 ls in split
Hopkinson pressure bar (SHPB) loading [35,36], 10 ms in combus-
tion shock tube [37,38], and 100 s in manufacturing. Given the
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Fig. 1. In situ multiscale measurements with X-rays. (a) Schematic diagrams of
XRD, SAXS/CDI, and PCI/CT techniques. Typical data of XRD, SAXS and digital image
correlation (DIC) are shown. Here, qx and qy are basic vectors of reciprocal space, x
and y are basic vectors of real space. (b) Experimental setup for gas-gun loading
along with X-ray imaging and diffraction/scattering diagnostics shown in (a), and
an optical interferometry system (Doppler pin system (DPS)). Loading can be
delivered with materials testing systems (MTSs), SHPBs, lasers, magnetic-driven
devices, shock tubes, and so on. Inset: time-structure of a typical synchrotron filling
mode. BCDI: Bragg CDI.
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multiple temporal and spatial scales inherent in EMs at various
stages of their life cycles, reliable engineering simulations must
resort to physics-based predictive models that incorporate multi-
scale structures and physical and chemical dynamics [6,7,39], call-
ing for temporally and spatially resolved measurements.

While static [9,40–42] or macroscale [18,34] characterizations
of EMs have been routine, resolving structure and physical and
chemical dynamics at the micro- and mesoscales and appropriate
temporal resolutions have been a diagnostics challenge. Since the
physical and chemical events in EMs upon external stimuli occur
in extreme conditions [6,18,33], the diagnostics should be nonde-
structive and penetrating, with high spatial and temporal resolu-
tions. Conventional techniques, such as optical microscopy with
matching reflective index [43], confocal scanning laser microscopy
[44], polarized light microscopy [33], and scanning electron micro-
scopy [45], can only provide surface measurements, and should be
complemented with diagnostics having see-through capability and
proper temporal resolutions, or providing extra information. The
remarkable progress in X-ray sources, terahertz (THz) sources,
detectors, and spectroscopy and imaging systems [46,47] offer
opportunities to address the diagnostics challenges for EMs. For
example, advanced synchrotron X-ray sources [46,48] and X-ray
free electron lasers (XFELs) [49,50] provide femtosecond- and
picosecond-scale pulse durations, and unprecedentedly high spa-
tial and temporal resolutions to resolve structure and physical
and chemical dynamics in EMs.

Here, we present a brief review on novel X-ray and optical diag-
nostics for EMs that are either emerging or already exist but are
rarely applied to EMs. These diagnostics are targeted for such sci-
entific questions and engineering problems as defects, strengths
[51], deformations [18], hot spots, phase changes, reactions, and
shock sensitivities [52,53]. This review emphasizes their capabili-
ties of temporally and/or spatially resolved measurements. In addi-
tion, basic principles of measurement and data analysis, and
illustrative examples for these are presented. In Section 2, we pre-
sent two-dimensional (2D) and three-dimensional (3D) X-ray
imaging techniques including X-ray phase contrast imaging (PCI),
X-ray computed tomography (CT), X-ray diffraction (XRD), coher-
ent diffraction imaging (CDI), and small angle X-ray scattering
(SAXS). Section 3 addresses THz and optical absorption and emis-
sion spectroscopy including THz absorption spectroscopy, pyrom-
etry and laser-induced breakdown spectroscopy (LIBS), and
ultrafast imaging interferometry, which includes one-
dimensional (1D) and 2D velocity interferometer system for any
reflector (VISAR) and transient imaging displacement interferome-
try (TIDI). Section 4 presents a summary of this review.
2. X-ray diagnostics

Advanced synchrotron and XFEL X-ray sources with high bril-
liance, high coherence, high repetition rate, and short pulse dura-
tion allow for in situ, real time, multiscale measurements on a
wide range of materials and processes [49,50,54,55]. Common X-
ray diagnostics are imaging in real space, diffraction and scattering
in reciprocal space, and spectroscopy. X-ray spectroscopy is
beyond the scope of this review and will not be discussed.

Different X-ray diagnostics involve different length scales and
thus, different spatial resolutions. Fig. 1(a) illustrates three types
of X-ray diagnostics: imaging (including PCI and CT), scattering
(including SAXS), and XRD, with a typical length scale of microme-
ter and sub-micrometer, 1–100 nm, and lattice spacing (Å), respec-
tively [46,56]. CDI is carried out in the Fourier space via phase
retrieval and can achieve a spatial resolution of sub-nanometer
scale. Such a rich suite of X-ray diagnostics renders structural char-
acterization of EMs at multiple spatial scales feasible.
For single-bunch synchrotron X-ray measurements, loading
devices, X-ray shutters, X-ray pulse train, and detectors are timed
against a radio frequency signal from the synchrotron, which serves
as themaster clockof synchronization among these four key compo-
nents [46]. The temporal characteristics, i.e., pulse width and pulse
separationof theX-raypulse train, are dictatedby the time structure
of electron bunch filling. Fig. 1(b) inset shows an example of the
standard filling pattern at the Advanced Photon Source: Pulsewidth
is ~80 ps, and pulse separation is 153.4 ns. Correspondingly, the
highest temporal resolution for X-ray measurements is limited by
pulse width (~100 ps), and the framing rate, by pulse separation.
For comparison, the highest temporal resolution in XFEL experi-
ments is 10–100 fs; the shortest pulse separation is approximately
10 ms for linac coherent light source (LCLS), 1 ls for LCLS-II, and
220 ns for European XFEL. For microsecond-level resolution, the
time structure of a synchrotron filling mode becomes irrelevant
and the X-rays can be treated as a continuous wave, while temporal
resolution is achieved with electronic shutters of detectors. Consid-
ering different temporal resolutions, physical and chemical pro-
cesses in EMs can be investigated at multiple temporal scales, in
addition to multiple length scales.

EMs can be subjected to different stimuli or loading, such as
lasers, gas-guns, SHPBs, materials testing systems (MTSs), and
shock tubes, with different loading rates, event durations, and
stress and temperature conditions. The setup for synchrotron-
based, in situ, real time, multiscale X-ray measurements [57],
implemented with gas-gun loading, is shown in Fig. 1(b) as an
example [56]. The projectile launched by a gas-gun impacts an
EM target, inducing physicochemical changes, which are probed
with X-ray imaging and diffraction, as well as an optical velocime-
ter. Since the event duration is of 100–1000 ns for gas-gun loading,
single-bunch X-ray measurements are required.

2.1. X-ray PCI and digital image correlation

Propagation-based PCI extracts phase information as well as
ensures the attenuation of an X-ray beam passing through a
material [58,59]. A heterogeneous phase object induces spatial
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variations in the phase of X-rays, /ðx; yÞ, and local curvature in the
transmitted wave front. The intensity change, Iðx; yÞ, during prop-
agation and interference of such wave fronts is proportional to the
Laplacian of this phase distribution, r2/ðx; yÞ, yielding edge
enhancement [58].

Iðx; yÞ / r2/ðx; yÞ ð1Þ

Therefore, PCI is particularly suitable for high-resolution imag-
ing of low-density materials like EMs. Currently, advanced X-ray
PCI based on synchrotron radiation and XFELs allows for in situ,
real-time imaging of internal deformation, damage, and reaction
dynamics under dynamic loading, at 100 ps [46,56] and 10–
100 fs [49,50] temporal resolutions, respectively.

Polymer bonded explosives (PBXs) are the most widely used
insensitive high explosives [33,60]. Defects within crystals at the
crystal-binder interface in the partially-dissolved crystal-binder
region or within the binder itself may all contribute to hot spot
nucleation [13,14] and initiate deflagration or detonation in abnor-
mal conditions. High-speed synchrotron X-ray PCI has been uti-
lized to characterize deformation and damage of PBXs under
dynamic loading with ultrasound [35], SHPB [35,61], and gas gun
[62,63]. The temporal and spatial resolutions can reach ~1 ls and
1–10 lm, respectively [46,48]. Fig. 2(a) displays the PCI images
of an octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocin (HMX)-based
PBX sample with sparsely distributed crystal particles [35] under
SHPB loading. The crystal particles can be clearly distinguished
from the polymer matrix (which has a similar density) due to edge
enhancement. The crystal-matrix delamination (at 95 ls) and par-
ticle breakage (at 240 ls) are manifested in the high-resolution PCI
images.

Strain mapping across an EM sample, which highlights strain
localizations and mechanical energy deposition, is crucial for
Fig. 2. (a) X-ray PCI image sequence of PBX under SHPB compression; (b) X-ray PCI
(c) corresponding Lagrangian shear strain (E12) and tensile strain (E11) fields. (a) Reproduc
Ref. [64] with the permission of AIP Publishing, �2014.
understanding hot spot formation. X-ray projections of microstruc-
tures (e.g., crystal particles in PBX) can provide natural speckles for
correlation analysis to track displacement/strain fields [64–66].
The calculation principle and procedure for X-ray digital image
correlation (DIC) is similar to those for conventional optical DIC
[67]. However, X-ray DIC provides smaller (50 lm or less) speckles
and higher spatial resolution (10 lm or better) [68] due to PCI. The
deformation dynamics can be resolved for local areas, e.g., parti-
cle–matrix interfaces in PBX. X-ray DIC is more advantageous
when internal features (e.g., explosive crystal particles) are used
to produce speckles through PCI [57,69]. Internal deformation
can be studied on a length scale beyond optical DIC. Optical DIC
is limited to low temperatures and may fail at or close to the det-
onation limit. On the other hand, X-ray DIC provides a flexible
method for measuring both surface and internal deformation fields
depending on how speckles are prepared, and opens new horizons
for ‘‘2.5D” strain measurements. In addition, X-ray DIC can be com-
bined with XRD to provide lattice-scale deformation mechanisms
[48,57], as detailed in Section 2.4.

Fig. 2(b) presents the first study on X-ray DIC for strain mapping
around a preset internal void in an aluminum plate under dynamic
tension [64]. Lagrangian tensile (E11) and shear (E12) strain concen-
trations are observed to nucleate and grow around the void with
increasing loading. The displacement and strain errors are below
0.01 pixels and 0.01%, respectively.

2.2. In situ and dynamic CT and mesoscale finite element modeling

Laboratory- or synchrotron-based CT serves as a unique tool for
nondestructive, 3D characterization of microstructures of a variety
of materials [70–72] including EMs [10,43,73,74]. With the rapid
development of X-ray sources, in situ CT is gaining popularity in
resolving deformation and failure of explosives or simulants under
image sequence of void growth in an aluminum plate under dynamic tension;
ed from Ref. [35] with the permission of AIP Publishing,�2016; (c) reproduced from
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mechanical loading (e.g., handling, transport, or green compaction)
[75–78]. Various loading cells including miniature MTS were
designed for in situ CT scanning [71,72]. Although laboratory CT
can be used for in situ testing, synchrotron CT usually provides a
much better combination of penetration and temporal and spatial
resolutions [72]. Fig. 3(a) presents an example of CT characteriza-
tion on a columnar granular packing under compression [70]. Par-
ticle rotation and breakage are clearly revealed in the 3D images,
consistent with stress drops in the force displacement curve. 3D
morphology of particles, intra-granular pores, and crack networks
can be quantified via topological analysis including gyration tensor
and fractal [70,79].

3D displacement/strain fields can be deduced from volume
image sequences via digital volume correlation (DVC) [72,73,75].
For PBX samples, crystal particles serve as natural speckles for
DVC. Various incremental DVC algorithms were developed for 3D
deformation mapping [80]. 3D correlation criteria were proposed
to establish the correspondence between reference and current
frames, similar to DIC. Iterative correlation was usually used to
achieve high accuracy. Fig. 3(c) [73] presents 3D microstructures
from CT characterization and the corresponding DVC analyses for
polymer-bonded sugar (PBS), an explosive simulant. Evolution of
the axial displacement field in the PBS sample is well correlated
to its heterogeneous microstructure, as well as debonding and par-
ticle breakage.

With synchrotron sources, the temporal resolution of CT can be
increased to ~5 ms (208 tomograms per second) [81]. Such a
dynamic CT has been applied to dynamic processes including
foaming [81,82], sintering [83], and cracking [84,85]. Fig. 3(b) pre-
sents two representative 3D images of a bubble structure captured
at 1 Hz. The velocity field of bubbles is quantified via particle imag-
ing velocimetry (PIV) [86]. Such information is useful for under-
standing packing dynamics, for instance, during compaction of
explosive crystals. Although the sub-second temporal resolution
is insufficient to resolve highly transient impact or shock events,
dynamic CT can capture the deformation dynamics of PBXs at
low loading rates or map void production and fluid flow in PBXs
Fig. 3. (a) Force–displacement curve and 3D tomograms from in situ testing of a granular
the curve. (b) Dynamic CT characterizations of a foaming process at 1 Hz, displaying tw
displacement fields of a granular packing under quasi-static compression. (d) 2D FEM
principal strain fields emp (right) at two volumetric strains. (a) Reproduced from Ref. [70] w
permission of Elsevier, �2012; (d) reproduced from Ref. [75] with the permission of MD
during manufacturing and processing, or under thermal decompo-
sition [87]. Recently, a high-speed CT system was demonstrated
based on flash X-ray radiography with multiple sources and detec-
tors at a sub-microsecond temporal resolution and a sub-
millimeter spatial resolution [88], while the number and quality
of tomograms remain to be improved via integrating more X-ray
sources and detectors. Such techniques are promising for studying
the shock detonation of EMs.

Moreover, 3Dmicrostructures of PBXs obtained fromdynamicCT
can be used as inputs to and for comparison with finite element
modeling (FEM) [67,89]. Details on the simulation procedures,
material models, and parameters [89–91] are beyond the scope of
this review. Fig. 3(d) shows that mesoscale FEM reproduces well
the crystal-binder delamination and intergranular cracking [67].
However, 2Dmesheswith a limitednumber of crystal particleswere
employed in previous studies for simplicity [67,89]. The appropriate
size for a 3D representative volume element at which macroscale
behaviors can be adequately described remains to be elucidated
[67,76]. With higher-resolution images and advanced image pro-
cessing, mesoscale FEM with realistic, complex 3D configurations
can be exceedingly useful for studying quantitatively the struc-
ture–property relations of PBXs, especially under high-rate,
thermal-mechanical loading [20,90]. Meanwhile, phase transition
and chemical reaction dynamics can be integrated into mesoscale
FEM via user subroutine programs, e.g. UMAT/VUMAT [92].
2.3. XRD, CDI, and SAXS

2.3.1. XRD
XRD is essentially a manifestation of electron density distribu-

tion of atoms in an ordered/disordered lattice via scattered X-
rays. Moreover, it is an indispensable tool for nondestructive deter-
mination of crystal structure, phase component, phase change and
pathway, grain size, texture, deformation (including strain tensor),
and indirectly residual stress and strength. XRD can be conducted
on polycrystalline and single-crystal solids, as well as on liquids.
packing under compression with a miniature MTS at the displacements marked on
o tomograms (left) and displacement field u (right) obtained from PIV. (c) 3D axial
model based on a tomogram of a PBX sample (left) and simulated 2D maximum
ith the permission of Elsevier,�2020; (b) and (c) reproduced from Ref. [73] with the
PI, �2017.



Fig. 4. Single-crystal XRD measurements on shock-compressed RDX with single-
bunch synchrotron and XFEL sources (simulated). (a) Crystal structure of a-RDX
[107]. (b) Crystal structure of c-RDX [102]. 2D XRD patterns for a ‘‘pink”
synchrotron source (c) and (d) and for an XFEL source (e) and (f) of a-RDX and c-
RDX, respectively. Here, 2h represents the diffraction angle and v is the azimuthal
angle of the diffraction vector projected on the diffraction pattern. (g) A represen-
tative undulator X-ray spectrum, where k means the wavelength of X-ray. XFEL:
22.68 keV, 0.1% bandwidth (BW).
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For instance, to elucidate the polymorphic structure of 1,3,5-
trinitrohexahydro-1,3,5-triazine (RDX), a widely used explosive
first synthesized in 1899 [93], has been investigated under ambi-
ent and high pressures regarding its polymorphism with combined
single-crystal and powder diffraction. At ambient conditions, RDX
exists as stable a-RDX and metastable b-RDX. Their crystal struc-
tures were obtained largely with single-crystal XRD [94–98]. RDX
has a complex phase diagram, as determined with the diamond
anvil cell (DAC) technique [19,40,99] and is rich in polymorphs,
including c-, d-, e-phases and the recently discovered n- and g-
RDX [100].

Static-compression diffraction experiments on RDX were pri-
marily conducted with DAC [40,101,102]. For shock compression,
both ex situ and in situ XRD measurements were conducted on
RDX [103,104], but no data have been published for the latter till
date. Despite that, though dynamic XRD with a synchrotron or
XFEL source has been well-established for shock compression
[46,56,105,106], its applications to EMs are just emerging.

To illustrate the feasibility of applying transient X-ray diffrac-
tion (TXD) to investigating EMs under shock compression, we per-
form XRD simulations on single-crystal (Fig. 4) [102,107] and
polycrystalline RDX (Fig. 5), regarding its phase change, equation
of state, and strength upon simulated plate impact loading. In
the simulations, diffraction intensity, I, of a simulated structure
at scattering vector q is the product of structure factor F qð Þ with
its complex conjugate, F � qð Þ [108,109], i.e.,
IðqÞ ¼ F � ðqÞFðqÞ ð2Þ
with

F qð Þ ¼
XN
j¼1

f jexp iq � rj
� � ð3Þ

where i denotes the imaginary unit, rj is the position of the jth atom
in an atomic configuration; f j is atomic scattering factor of the jth
atom and depends on q.

For the a ? c phase transformation of RDX at ~4.0 GPa
[101,110] (Figs. 4(a) and (b)), we calculate the corresponding
single-crystal diffraction patterns with typical synchrotron and
XFEL sources. We choose the first harmonic of a synchrotron undu-
lator source (an 18 mm period and 13 mm gap) at the Advanced
Photon Source with an 8% bandwidth (Fig. 4(g)). It is noteworthy
that the undulator bandwidth is tunable, an advantage for single-
crystal diffraction. The single-crystal diffraction patterns (Figs.
4(c) and (d)) display drastic differences upon phase transition. Fur-
thermore, the Q-resolution achievable in these experiments is suf-
ficiently high for partial phase analysis, despite its low symmetry
and large unit cells. For an XFEL source with a bandwidth of
0.1%, reasonable single-crystal diffraction patterns can also be
obtained (Figs. 4(e) and (f)) for partial phase analysis.

For polycrystalline diffraction, diffraction rings from a deformed
specimen carry information on phase and strain, as well as
strength. As we demonstrated recently [51], the Singh theory
[111] can be used to deduce volumetric strain and residual
strength from diffraction rings obtained with a properly designed
diffraction–detection geometry.

The geometry in Fig. 5(a) can be considered as an example of
dynamic XRD under shock compression. w represents the angle
between the diffraction plane normal and the loading direction
and can be calculated from the diffraction and azimuthal angles.
The distribution of w on a 2D diffraction detector is shown in
Fig. 5(b). Furthermore, the lattice spacing dm hklð Þ extracted from
a 2D diffraction pattern with Bragg’s law, is related to w via

dm hklð Þ ¼ dP hklð Þ 1 þ 1� 3cos2w
� �

Q hklð Þ� � ð4Þ
where, dP hklð Þ denotes d-spacing for a specific diffraction plane (hkl)
due to equivalent hydrostatic stress and Q depends on strength,
residual strength, and single-crystal elastic compliances. The residual
strength t is given by t ¼ 6G QðhklÞh if , where G is the aggregate shear
modulus, and parameter f is approximately 1 for all crystal systems.

A polycrystalline a-RDX sample is compressed uniaxially by 5%
to mimic plate impact under the loading–diffraction–detection
geometry in Fig. 5(a), and the corresponding diffraction patterns
before and after shock compression are presented in Figs. 5(c)
and (d), respectively. Fitting the diffraction rings at ambient condi-
tion yields Q ¼ 0, leading to zero residual strength and volumetric
strain, as expected. For the diffraction pattern during shock com-
pression, the residual strength is obtained as t = 0.88 GPa with
shear modulus G = 7.83 GPa [112], and the volumetric strain is
5% as preset. Thus, the Singh method can be used to obtain the vol-
umetric strain and residual strength during shock compression, as
demonstrated for metals [51].



Fig. 5. XRD measurements on shock-compressed polycrystalline RDX with 25 keV monochromatic X-rays (simulated). (a) Loading and diffraction geometries of w, the angle
between the shock direction and the normal of a specific diffracting plane ( n!). (b) Distribution of w on the 2D diffraction detector, set perpendicular to the incident X-ray
beam. XRD patterns of (c) uncompressed and (d) 5%-compressed a-RDX.
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2.3.2. CDI
Single grains or single particles represent the smallest struc-

tural component of EMs, and their size, shape, and internal defects
can affect the performance of EMs significantly [113]. For example,
the ‘‘grain size effect” on the shock sensitivity of high explosives
has been extensively studied [114]. There have been attempts to
lower the shock sensitivity by reducing crystal defects [115,116].
Resolving the single-particle structure and dynamics is directly rel-
evant to the synthesis, processing, and performance of EMs
[113,117].

Coherent XRD imaging techniques, especially Bragg CDI (BCDI)
and plane-wave CDI (PCDI), are a set of novel X-ray microscopy
tools capable of sub-nanometer- and nanometer-level spatial reso-
lutions [118,119]. BCDI is used to investigate the 3D Bragg node of
a single-crystal grain via slightly rotating the grain (Fig. 6(a)), and
can resolve its 3D structure, 3D strain, and internal defects, includ-
ing twinning and dislocations [119–122]. Scattering intensity IðqÞ
at a given scattering vector q near a Bragg node can be written as

I qð Þ ¼
Z 1

0
qL rð Þs rð Þeiq�reiq�u rð Þdr

����
����
2

ð5Þ

where qL rð Þ is electron density of the lattice, s rð Þ is crystal’s shape
function, and u rð Þ represents the displacement field of atoms com-
pared to their ideal lattice sites. PCDI is intended for reconstructing
the structure of an isolated crystalline or non-crystalline particle,
via detecting coherently scattered X-rays [123–125] (Fig. 6(b)).
Unlike BCDI, scattering intensity I qð Þ for PCDI is determined only
by a particle’s electron density distribution function, q rð Þ, and I qð Þ
is given by

I qð Þ ¼
Z 1

0
q rð Þeiq�rdr

����
����
2

ð6Þ

Although CDI has rarely been applied to EMs, it does exhibit
unique potential. Single grains investigated by BCDI can either be
isolated, within a polycrystalline assembly, or embedded in a poly-
meric matrix (such as PBX). For an isolated grain, the information
on 3D structure, 3D strain, and internal defects can be obtained.
Moreover, the methodology and experimental instrumentation
established for inorganic/metallic nanoparticles [126,127] can be
applied directly. For a single grain within a polycrystalline assem-
bly or a polymeric matrix, the aforementioned information can be
employed to infer the grain–grain and grain–binder interactions.
Grain responses and defect dynamics under external loading can
also be derived by in situ BCDI measurements, as presented in Refs.
[119,128]. Considering the complexity imposed by the BCDI exper-
iments on EMs, advanced simulation tools, such as GAPD [108]
become crucial for experimental design and data interpretation.
Fig. 6(b) shows a 3D Bragg node of a Cu nanorod, calculated with
GAPD. Its internal twinning defect can be well-reconstructed
(Fig. 6(c)). BCDI may not be realistic for high-speed or ultrafast
measurements, because of the requirement of sample rotation.
Moreover, the brilliance of the incident X-rays is severely limited
to mitigate radiation damage to an EM specimen [129].

With intense femtosecond X-ray pulses from an XFEL, single-
shot PCDI has been demonstrated to be capable of resolving tran-
sient nanoscale dynamics with ~10 fs temporal resolution [125].
Fig. 6(d) presents a PCDI pattern of a bacterium with a single XFEL
pulse, and the corresponding reconstructed 2D structure [130].
Explosion dynamics of sucrose nanospheres was studied using
single-shot PCDI, and significant sample expansion was observed
at 500 fs–1 ps after pump [131]. Given the similarity between
sucrose and organic explosives [132], such measurements can be
extended to EMs. The pump can either be an optical laser or an
X-ray pulse from XFEL. For the X-ray pump and probe with the
split-and-delay scheme, the first X-ray pulse can be used for igni-
tion and the simultaneous structural analysis of a particle, while
the second X-ray pulse can probe the ignition/explosion dynamics
at a certain delay [131]. Such experiments enable us to resolve the
growth, combustion or explosion dynamics at the single particle
level [113,133–135].
2.3.3. SAXS
Inherent structural heterogeneities (Fig. 7(a)) introduced during

manufacturing and processing, ranging from nanometer to
micrometer length scales, can have significant impacts on the
safety and performance of EMs [141–144]. Moreover,



Fig. 6. (a) Schematic diagram of CDI. ki and kf are the incident and diffracted X-ray wavevectors, respectively. q represents the diffraction wavevector. (b) Simulated
reciprocal space of a Cu sample with a single twin. qx , qy and qz are three basic vectors of reciprocal space. (c) Reconstruction of (b). (d) Representative diffraction pattern and
reconstructed image of Staphylococcus aureus. (d) Reproduced from Ref. [130] with the permission of Springer Nature, �2016.

Fig. 7. Resolving structural inhomogeneities and dynamics of EMs with SAXS measurements. (a) Schematic diagram of a detonation model, and corresponding sub-
micrometer structures of both initial explosives and detonation products. The chemical decomposition of an explosive occurs in the chemical reaction zone (CRZ). PN and PCJ
denote the peak pressure and pressure at the Chapman–Jouguet (CJ) plane where the chemical reaction ceases, respectively. (b) Guinier approach and Porod’s law for
obtaining the sizes and surface areas of particles/voids, respectively. (c) Particle/void size distribution function (PVDF) derived using scattering profile fitting methods.
(d) Typical morphologies of nanoEMs. (e) SAXS curves of different nanostructures. (f) Anisotropic SAXS pattern of a dense system consisting of nanorods with preferred
orientations. (c) Reproduced from Ref. [136] with the permission of the International Union of Crystallography, �2019; (d) reproduced from Refs. [137–140] with the
permission of Elsevier, �2016, �2020, �2017, and �2017, respectively.
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nanostructures can be formed as a denotation product. For exam-
ple, solid carbon is believed to be generated as a major constituent
of the detonation products of carbon-rich high explosives (Fig.
7(a)) [145–147]. Characterizing such nanostructures initially or
during dynamic loading (their formation and growth dynamics)
is essential to establish structure–property relations and under-
standing the physical and chemical mechanisms in EMs.
SAXS is sensitive to electron density variations or contrast
across length scales ranging between a few nanometers to
micrometers, and is well-suited for the structural characterization
of EMs at these scales. Abundant information can be obtained non-
destructively from SAXS measurements, such as particle size distri-
butions (monodisperse or polydisperse) and pore morphologies
(open or closed). For monodisperse systems consisting of particles
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or voids with contrast Dq, the radius of gyration Rg and surface
area S can be obtained via the Guinier approach

I qð Þ ¼ I 0ð Þexp �q2R2
g=3

� �
ð7Þ

and the Porod’s law

I qð Þ � 2p Dqð Þ2q�4S ð8Þ
respectively (Fig. 7(b)). Here, I is scattering intensity and q is the
modulus of the scattering vector. For polydisperse systems, particle
size distributions can be obtained by curve fitting (Fig. 7(c)).

SAXS has been successfully applied to obtain the surface areas
and the internal void and particle size distributions for the pow-
ders and pressed pellets of high explosives [148]. For example,
synchrotron-based in situ SAXS measurements revealed that ther-
mal cycling leads to a larger void size and higher void concentra-
tion in 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)-based PBXs
[149], and can be seen as an application in PBX manufacturing.
Highly brilliant advanced light sources also enable us to investigate
highly transient processes [46,150]. Time-resolved SAXS (TR-
SAXS), based on synchrotron or XFEL sources is promising to
answer certain unresolved questions, especially those that cannot
be addressed due to their highly transient nature and the lack of
an appropriate diagnostic tool. For instance, synchrotron-based
pink-beam TR-SAXS measurements were conducted to explore
the mechanism of formation of carbon condensation following det-
onation [151–153], and the feasibility of pink-beam SAXS was
demonstrated [154]. Recent studies indicate that diamond parti-
cles form and grow slightly within 300 ns after detonation
[155,156], although it is desirable to combine TR-SAXS with simul-
taneous dynamic XRD to investigate processes discussed above.

Nanoenergetic materials (nanoEMs) represent an interesting
group of EMs with high energy density and excellent combustion
performance [134,157,158]. NanoEMs can assume various mor-
phologies (Fig. 7(d)), such as nanospheres [159], nanorods/
nanowires [160], networks [161], nanolayers [162], and core–
shell structures [163,164]. SAXS is also advantageous in characteri-
zing these nanostructures (Fig. 7(e)), including particle size
distribution and nanorod radius. It is worth mentioning that the
interpretation of SAXS measurements can benefit greatly from
advanced simulation tools, such as SLADS [165] and GAPD,
particularly for nanostructures that cannot be simulated or
modeled with traditional simulation/analysis methods. These two
codes are capable of calculating the scattering of large, anisotropic,
and dense nanoparticle systems. Fig. 7(f) illustrates a simulated
anisotropic SAXS pattern for a dense system consisting of nanorods
with preferred orientations.

2.4. Simultaneous multiscale measurements

With many physical and chemical processes in EMs being mul-
tiscale in nature, it is highly desirable to obtain information at mul-
tiple spatial scales simultaneously during a single shot. In
principle, separate ‘‘identical” shots can be conducted to acquire
data at different spatial scales. However, in reality, no two shots
are identical. The approach of simultaneous multiscale measure-
ments is particularly advantageous in experimental rigor, and
can bridge measurements at different scales and reveal the physics
across different spatial scales.

Three main types of X-ray diagnostics, namely, imaging and
diffraction/scattering (Fig. 1(a)), can be implemented simultane-
ously through a combination of two or three types, such as
XRD + PCI and XRD + SAXS, to obtain information at the micro-
and mesoscales. In addition, conventional bulk-scale techniques,
such as laser interferometry and strain or stress gauges, can be uti-
lized for macroscale measurements. Therefore, in principle, micro-,
meso-, and macroscale measurements can be performed during a
single shot. Here, microscale can be broadly defined to include lat-
tice and nanoscale.

For the XRD + PCI measurements, microscale (lattice-level) and
mesoscale (in terms of strain field, for instance) information can be
acquired with XRD and PCI, respectively. For example, this tech-
nique was applied to a textured magnesium alloy AZ31 [57,166];
XRD indicates the presence/absence of deformation twinning,
whereas PCI demonstrates strain localization/delocalization, and
the stress–strain curves (obtained from stress gauges) exhibit dif-
ferent strain rate hardening features. Such simultaneous multiscale
measurements revealed rigorously for the first time that deforma-
tion twinning induces strain delocalization, which in turn leads to
increased strain rate hardening in magnesium alloy AZ31. The
simultaneity allows for sensible cross-scale connections to be
made and the underlying physics to be revealed. The XRD + SAXS
measurements are helpful in obtaining the phase and size informa-
tion of nanoparticles simultaneously, and can be used to under-
stand, for instance, the phase, size, and dynamics of post-
detonation carbon condensates. Furthermore, the simultaneous
multiscale measurements are expected to be applicable to EMs.
3. Dynamic THz and optical diagnostics

3.1. THz and optical spectroscopy

The THz regime is located between the microwave and mid-
infrared regimes on the electromagnetic spectrum [47], spanning
0.3–10 THz (or 10–300 cm�1). Certain vibrational modes of EMs
can generate unique THz spectral features, thus being useful in
the detection and identification of EMs [168]. Additionally, THz
spectroscopy can yield the absorption coefficients and refractive
indices of EMs [169]. Furthermore, minor changes in the molecular
configurations of EMs may result in THz spectral changes. Conse-
quently, THz spectroscopy can reflect the dynamic chemical and
physical responses of EMs to external stimuli.

Recently, the THz spectroscopy of EMs has been extended to low
temperatures [170,171]. For example, Fig. 8(a) illustrates the
temperature-dependent THz absorption spectra of single-crystal
RDX measured along the [002] direction using THz time domain
spectroscopy (THz-TDS) at 77–300 K. When the temperature
increases to approximately 200 K, the absorption peaks of RDX
around 0.5 THz disappear, indicating a possible phase change.
Melinger et al. [170] measured the THz absorption spectra of RDX
films with THz-TDS at 13–293 K. Below 80 K, there are more than
10 THz absorption peaks. At 80–293 K, the spectra show only one
distinct peak at approximately 0.84 THz, which becomes relatively
weak and broadened as the temperature increases. In Fig. 8(a), the
absorption peaks at around 0.5 THz weaken and then disappear for
single-crystal RDX along the [002] direction. Damarla et al. [172]
reported the THzabsorptionof RDXpowders in a Teflonmatrixmea-
sured using THz-TDS at 303–573 K. With increasing temperature,
the THz absorptionpeaks of RDX at approximately 0.84 THzbroaden
at 378 K, indicating thermally initiated decomposition.

Although THz absorption spectroscopy has been explored for
molecular crystals under static compression [173], it has not been
explored under dynamic loading. As a linear absorption spec-
troscopy technique, the detection sensitivity of THz absorption
spectroscopy should be considerably higher than those of nonlin-
ear optical spectroscopy techniques, such as coherent anti-Stokes
Raman spectroscopy (CARS) and Raman spectroscopy [174]; thus,
THz absorption spectroscopy demonstrates a significant potential
in investigating EMs under shock compression.

Optical spectroscopy has long been used to study dynamic
chemical and physical processes in EMs, particularly owing to its



Fig. 8. (a) Temperature-dependent THz absorption spectroscopy of RDX along [002]. (b) Spectral radiation in GW�m�3�Sr�1 from shocked methane diluted in Ar. (c) Emission
spectra of CN molecules from laser-ablated nitromethane in an Ar atmosphere. L denotes the longitudinal position. (c) Reproduced from Ref. [167] with the permission of
Elsevier, �2020.
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high temporal resolutions [175]. Ultrafast optical absorption and
Raman spectroscopy, including UV/visible absorption spectroscopy
[176], infrared absorption spectroscopy [177], Raman spectroscopy
[178], and CARS [179,180], can achieve temporal resolutions up to
the probe laser pulse width (the shortest of which can be tens of
femtoseconds). In contrast, ultrafast emission spectroscopy,
including optical pyrometry and LIBS, can achieve temporal resolu-
tion limits of ultrafast detectors, such as streak cameras (1–100 ps)
[181,182] and photomultiplier tubes (sub-nanoseconds).

For pyrometry based on photomultiplier tubes, spectral radia-
tion is captured at different wavelengths (channels), and such
emission spectra are frequently used to deduce the shock temper-
ature from Planck’s law with temperature or wavelength depen-
dent emissivity [32]. Fig. 8(b) depicts the spectral radiation of
shocked gas-phase methane diluted in Ar measured with a 40-
channel optical pyrometer; the onset of intense emission at
~4500 ns indicates an ignition event.

Bouyer et al. [183] captured the SDT of nitromethane within a
few nanoseconds using a 16-channel pyrometer. Different stages
of the SDT, were clearly observed including shock entrance,
super-detonation, strong detonation, and steady detonation.

In LIBS, a pulsed laser is focused onto a specimen and ablates it,
creating a microplasma for emission spectroscopy. On the basis of
molecular and atomic emission lines, LIBS has been mostly utilized
in identifying and detecting EMs [184,185]. To improve the sensi-
tivity and selectivity of LIBS, double nanosecond-laser pulses [186]
or femtosecond-laser pulses [187] are also used. Time-resolved
LIBS has been attempted to understand chemical reaction mecha-
nisms of EMs during laser ablation [185,188,189]. Recently, Zhao
et al. [167] investigated atomic and molecular emission of nitro-
methane in an Ar or N2 buffer gas using fs LIBS. They identified
electronic bands of CN, C2, and NHmolecules and atomic transition
lines of CI, NI, and Ha (Fig. 8(c)). Rotational and vibrational temper-
atures of CN molecules were determined assuming local thermo-
dynamic equilibrium [191], via fitting with the following equation:

In0 ;n00 ;v 0 ;v 00 ;J0 ;J00 ¼ Ce
qv 0 ;v 00SJ0 ;J00

Q rotv 0 m
�4

J0 ;J00exp � F 0hc
kBTrot

	 

exp � G0hc

kBTvib

	 

ð9Þ

where, I is emission intensity; n, v , and J are principal, vibrational,
and rotational quantum numbers, respectively; Ce is the emission
constant; h, c, and kB are Planck’s constant, the vacuum light veloc-

ity, and Boltzmann constant, respectively; v
�
J0 ;J00 is the transition

wavenumber; Trot and Tvib are rotational and vibrational tempera-
tures, respectively; Q rot is the rotational partition function; qv 0 ;v 00

and SJ0 J00 are the Franck–Condon coefficient and the Hönl–London
factor, respectively; and F 0 and G0 are the rotational and vibrational
energy, respectively.

Since LIBS detects only a very small number of atoms and mole-
cules, its capability can be expanded with sensitive trace gas tech-
niques such as mass spectrometry [190]. For example, Civiš et al.
[190] studied 1,1-diamino-2,2-dinitroethylene (FOX-7) using a
combination of LIBS and selected ion flow tube mass spectrometry
(SIFT-MS). Twelve stable gaseous compounds formed in a laser-
induced microplasma were identified by SIFT-MS; C, H, and N
atoms and CN, OH, and NO molecules were detected via LIBS.
The decomposition mechanism in laser-induced breakdown of
FOX-7 was then proposed on the basis of the joint measurements.

Rapid expansion of laser-induced microplasma can generate
shock waves, which interrupt molecular formation in a micro-
plasma [31]. For example, Harilal et al. [31] investigated the molec-
ular formation mechanism in laser-ablated aluminum with shock
wave generated at the plasma front. At the early stage of the
plasma expansion, the shock wave inhibited the combustion
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process by keeping the ambient oxygen away from the micro-
plasma. After the shock wave collapsed, the molecular formation
became prevalent. Using a streak camera, Hori et al. [191] obtained
time-resolved, single-shot LIBS spectra from a laser induced micro-
plasma in air. Rabasovic et al. [192] tracked the maximum bright-
ness displacement during the rapid plasma expansion of a laser-
induced microplasma in air, and a velocity of plasma expansion
of 35 km�s�1 was obtained using streaked LIBS. Therefore, LIBS
has the potential for investigation of EMs under laser ablation.

3.2. Ultrafast imaging interferometry

Ultrafast imaging interferometry allows for temporally and spa-
tially resolved (1D or 2D) measurements of displacement/velocity
fields under dynamic loading and is advantageous for making con-
nections between structural inhomogeneity and wave front rough-
ening, and likely, hot spots. Such interferometric diagnostics
include 1D line-VISAR [193], 2D-VISAR [194], and TIDI [195].
TIDI/2D-VISAR maps out-of-plane surface (or interface) displace-
ment/velocity field, and their highest temporal resolution can
reach the width of a probe laser pulse or the temporal resolution
limit of a detector (femtoseconds to nanoseconds) [196,197]. The
spatial resolution is normally 1–10 lm. The displacement sensitiv-
ity of TIDI and velocity sensitivity of VISAR are approximately
10 nm and 10 ms�1, respectively.

The probe and reference light paths (two arms) are built in a
TIDI system, and the phase of the probe light evolves dynamically
as a specimen responds to an external stimulus. The interference of
these two arms is recorded by a 2D detector as

I x; yð Þ ¼ 1þ r2 x; yð Þ� �þ 2r x; yð Þcos 2pf 0xþU x; yð Þ½ �; ð10Þ

where I is light intensity, r is the reflection coefficient, f 0 is the ini-
tial frequency of fringes, and U is the phase shift induced by the
Fig. 9. Dynamic imaging interferometry. (a) TIDI: fringe pattern of shocked copper and
camera record of laser-shocked aluminum and (d) corresponding velocity history. (a
(c, d) reproduced from Ref. [199] with the permission of Spring Nature, �2019.
loading. The displacement field can be obtained via solving U, as
follows:

d x; yð Þ ¼ k0
4pcosh

U x; yð Þ

where k0 is the wavelength of the probe light and h is tilt angle in
the incident light. For 2D-VISAR, both paths collect lights from the
same target, and an etalon is placed in the reference path to induce
a time delay.

TIDI and 2D-VISAR have been used in dynamic loading of met-
als, and these successful applications spell their potential for EMs.
Fig. 9(a) shows a TIDI fringe image and corresponding displace-
ment field of polycrystalline materials under shock loading [198].
The out-of-plane displacement field shows displacement gradients
and thus wave field heterogeneity, as a result of slight bowing in
loading (the general tendency) and local grain structure (the local
fluctuations). TIDI is a promising tool for studying the effect of
structural inhomogeneity on shock response of EMs, in particular,
thermomechanical processes related to hot spots.

With a streak camera, line-VISAR is capable of measuring veloc-
ity field across a line by recording Doppler shift in the frequency of
a probe laser. The interferometer consists of two light paths, and an
etalon is placed in one of the paths. The time delay induced by the
etalon creates phase shift between the two paths. Typical tempo-
ral, spatial, and velocity resolutions of line-VISAR are 1 ns, 10
lm, and 20 ms�1, respectively. An example of line-VISAR measure-
ment for laser-shocked aluminum [199] is shown in Fig. 9(b). Here,
line-VISAR measures the free surface velocity field (1D) and shock
front roughening. Although the roughening is minor in this case,
the high spatial and temporal resolutions offered by line-VISAR
allow for ultrafast measurements on wave front inhomogeneity
in EMs (such as PBX) with inherent structural inhomogeneity at
different spatial scales.
(b) corresponding out-of-plane displacement map. (c) Line-imaging VISAR: streak
, b) Reproduced from Ref. [198] with the permission of AIP Publishing, �2007;
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4. Summary

We briefly review X-ray, THz, and optical diagnostics for inves-
tigating EMs at multiple temporal and spatial scales, including 2D
and 3D X-ray imaging, X-ray diffraction, coherent XRD imaging,
SAXS, THz and optical absorption/emission spectroscopy, and 1D
and 2D velocity/displacement interferometry, with emphasis on
their capabilities for temporally and/or spatially resolved measure-
ments. Basic principles of measurement and data analysis and
illustrative examples are presented. In general, the discussed tech-
niques have great potential for application in investigation of EMs,
and there is a requirement for concerted efforts in defining scien-
tific questions and engineering problems, experimental design,
data analysis and interpretation, and multiscale modeling.
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