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Burgeoning growth of tall buildings in urban areas around the world is placing new demands on their
performance under winds. This involves selection of the building form that minimizes wind loads and
structural topologies that efficiently transfer loads. Current practice is to search for optimal shapes,
but this limits buildings with static or fixed form. Aerodynamic shape tailoring that consists of modifying
the external form of the building has shown great promise in reducing wind loads and associated struc-
tural motions as reflected in the design of Taipei 101 and Burj Khalifa. In these buildings, corner modifi-
cations of the cross-section and tapering along the height are introduced. An appealing alternative is to
design a building that can adapt its form to the changing complex wind environment in urban areas with
clusters of tall buildings, i.e., by implementing a dynamic facade. To leap beyond the static shape opti-
mization, autonomous dynamic morphing of the building shape is advanced in this study, which is imple-
mented through a cyber–physical system that fuses together sensing, computing, actuating, and
engineering informatics. This approach will permit a building to intelligently morph its profile to mini-
mize the source of dynamic wind load excitation, and holds the promise of revolutionizing tall buildings
from conventional static to dynamic facades by taking advantage of the burgeoning advances in compu-
tational design.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Worldwide urbanization is resulting in shifting population to
densely populated urban centers. This is leading to a burgeoning
growth of tall buildings that are exposed to severe weather with
potentially disproportionate impact. In particular, these slender
structures are highly sensitive and susceptible to wind-induced
motion. In the design of tall buildings, structural engineers are fac-
ing the challenge of striving for the most efficient and economical
design solutions while ensuring structural safety, serviceability for
intended function, and habitability for occupants over its design
life-time. In response to the needs addressed above, significant
research progress has been made in the mitigation of wind-
induced motion of tall buildings through aerodynamic sculpting,
adding auxiliary damping devices, or selecting an efficient struc-
tural system with the addition of belt trusses, outrigger trusses,
or super columns [1]. Among all these strategies, aerodynamic
shape tailoring that consists of modifying the external envelope
of the building in order to mitigate the intensity of the governing
wind loads has shown most promise as has been reflected in the
real-world building design including Taipei 101 [2], Burj Khalifa
[3], and other buildings.

Current practice of aerodynamic shape tailoring involves select-
ing the best performing geometric profile from a limited set of can-
didate building forms by carrying out wind tunnel tests to assess
their aerodynamic performance. Now with the advances in compu-
tational fields, computational design has emerged as a powerful
design paradigm in the context of the design of structures. Com-
pared to conventional design practice that relies on costly and
often time-consuming wind tunnel experiments, the development
of a computational platform for aerodynamic shape tailoring has
the promise of delivering cost-effective and aesthetically appealing
design while allowing thorough exploration of the aerodynamic
design space. Within the past few years, fundamental studies for
developing an efficient shape optimization framework for tall
buildings have been successfully carried out [4–6], in which com-
putational fluid dynamics (CFD) fused with machine learning tech-
niques has allowed to capture the beneficial effects of geometric
modifications at the early stage in the design process.

Urban cities layouts are complex as besides the loads on an iso-
lated building, the buildings generally experience loads caused by
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Fig. 1. Dynamic shading system of the Al-Bahr Towers. Reproduced from Ref. [11]
with permission of the Creative Commons Attribution License CC BY 4.0, �2015.

1444 F. Ding, A. Kareem / Engineering 6 (2020) 1443–1453
urban aerodynamics manifested by surrounding cluster of tall
buildings with adverse load effects. For example, when Hurricane
Ike passed over downtown Houston in 2008, localized vortical
flows were unexpectedly triggered due to the interference effects
between two adjacent structures, causing extensive damage to
cladding and glass failure [7]. This was found to be a consequence
of urban aerodynamics that added loads due to a unique combina-
tion of wind orientation and building’s layout that caused these
adverse effects. These were not anticipated in the design of these
structures. In this regard, the aforementioned aerodynamic shape
tailoring only considered at the preliminary design stage may be
inadequate in facing the challenge of the unpredictable extreme
wind events. Akin to planned morphing wings of an aircraft, the
next generation of tall buildings may include structural shapes that
can morph according to their surrounding flow environment.
Towards building more resilient cities in the future [8], there is a
need that tall buildings can actively respond to the changing envi-
ronmental conditions that have not been experienced or antici-
pated previously. Empowering buildings with such intelligence is
a coveted goal in building smart cities of the future.

Intelligent structures may incorporate sensing, actuating, and
signal processing elements to successfully alter the structural form
[9]. Inspired by the biomechanics of birds that can manage to
morph their profile in flight to enhance aerial locomotion under
changing ambient conditions, the future tall buildings can be
designed to change their forms in compliance with the changing
demands placed by the complex and evolving wind environment
in urban areas. Early innovative engineering practice involving
intelligent structural systems could be traced back to morphing
aircraft wings that was carried out by Wright Brothers. Later this
technique has been successively applied to the design of adaptive
space or marine structures that can alter their functionality during
their service lives, and also to the design of mobile robots to
achieve the deployment control for their mechanical structures
[10], to name but a few. Rapid developments in material sciences,
electrical systems, and computer science disciplines are now driv-
ing the cutting-edge design of the intelligent civil structures. As an
example of application, the Al-Bahr Towers in Abu Dhabi adopted a
dynamic shading system that is capable of autonomously respond-
ing to the movement of sun (Fig. 1) [11].

A major challenge that impedes the design of intelligent struc-
tures that can actively respond to the dynamic loading conditions
such as wind loads is that the morphing system appendage must
perform robustly without affecting the stability of the load resist-
ing system. Additional considerations of construction and mainte-
nance costs demanded by the complexity of the design of dynamic
facades would add to the challenges to the design of autonomously
morphing structures. By minimizing the wind load effects a mor-
phing system would promise in reducing the related cost to the
structural system and the envelope of the building. Furthermore,
aesthetic attraction brought by the dynamic facade would make
these buildings iconic symbols of modern cities and attract tourist
attraction on a windy day. In addition, technological challenges
remain involving sensing analysis, artificial intelligence (AI) and
control theory for efficiently informing the real-time control sys-
tem of the structure in response to the changing external environ-
ment. Although autonomous morphing of civil structures is still in
its infancy, our current pilot study could pave the way towards
implementing this concept. In this research, a cyber–physical
based sensing control and actuation system for autonomous mor-
phing of building facades is developed.

The paper is organized as follows. In Section 2, the aerodynamic
shape tailoring strategy using the advances in CFD and machine
learning will be first reviewed. Technical issues for designing mor-
phable structures embedded with the sensing and actuating sys-
tems and control algorithms are presented in Section 3. To go
beyond the static computer-aided design of aerodynamic shape
tailoring introduced in Section 2, the cyber–physical design plat-
form is introduced for autonomous morphing of the structure in
Section 4. Concluding remarks are given in Section 5.
2. Aerodynamic shape tailoring

Tall buildings and long span bridges when exposed to wind
undergo complex interactions in which the external shape of the
structure plays an important role in determining the level of
resulting loading. Based on the literature, aerodynamic shape tai-
loring that consists of modifying the external envelope of the
building such as corner modifications, tapering, and twisting, has
shown great promise in reducing the magnitude of wind loads
[1,12–14]. For example, Taipei 101 Tower in its final design stage
considered a series of corner modifications to the cross-section
including double-recessed corners, which led to a 25% reduction
in the base moment due to wind as compared to the original design
using a square section [15].

Although current design practice that involves selecting from
the limited building profiles through wind tunnel tests is an effec-
tive means of delivering feasible shapes, the cost and time needed
are high primarily due to the expensive and time-consuming pro-
cedure using wind tunnel tests. Moreover, in this approach, a vast
portion of the search space for the shape design remains unex-
plored as limited options are examined in a wind tunnel test. As
a result, more conventional configurations are favored over inno-
vative ones [5]. Now with the burgeoning digital revolution and
the emergence of pervasive computational design, innovative tools
can be envisaged to navigate through the labyrinth of shaping
design space which otherwise has been limited to a few selected
scenarios that rely on wind tunnel tests. This computational design
platform would allow the beneficial effects of geometric modifica-
tion to be comprehensively assessed during the conceptual design
stage. It takes full advantage of a fusion of CFD, stochastics,
machine learning, and beyond to accurately assess wind loads on
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structures and guide their sculpting with quantifiable confidence
levels. The following sub-sections provide an overview of the
state-of-the-art aerodynamic shape tailoring strategy.
2.1. Formulation of shape optimization

As an example application, aerodynamic shape tailoring of a
building cross-section is used for illustrating the shape optimiza-
tion scheme. The problem formulation and its schematic are out-
lined in Figs. 2 and 3, respectively. The goal is to search for the
cross-sectional configuration with the most favorable aerodyna-
mics. The baseline geometry considered for optimization is a
square cross-section with rounded corners [4,5]. As the four axes
of symmetry are defined, the geometric configuration can be fully
described by the shape between any two lines of symmetry. Two
independent controlling points between the two lines of symmetry
are used to interpret the geometry of the cross-section. Accord-
ingly, design variables in this shape optimization problem are
defined as the coordinates of these two controlling points
q ¼ Dy�1; Dy

�
2

� �
. Constraints are often used for geometric require-

ments that relate to the architectural considerations including
symmetry properties, maximum absolute displacements, and so
on. In this study, constrained functions are defined as the maxi-
mum allowable displacements of the two controlling points.

Most buildings present a bluff profile to the wind, which create
large regions of separated flow and accompanying unsteady wake
region downstream that generates unsteady wind forces in a direc-
tion perpendicular to the mean wind. The aerodynamic objective
functions are defined as the mean drag coefficient lCd and the stan-
dard deviation of the lift perpendicular to the wind, i.e., lift force
coefficient rCl. The goal is then explicitly expressed as minimizing
these two competing aerodynamic objectives G qð Þ; which yields
the Pareto optimal solutions, or the Pareto front [16].
Fig. 2. Formulation of the aerodynam
To allow thorough exploration of the aerodynamic design space,
the optimization problem can be solved by applying rigorous opti-
mization algorithms such as genetic algorithms [17]. Nonetheless,
the optimization process calls for significant computer resources
due to computationally intensive CFD simulations that are
required to evaluate the aerodynamic objectives at each optimiza-
tion cycle, thus significantly compromising the feasibility of
computer-aided shape design. To address this issue, surrogate
modeling technique is introduced as a computationally inexpen-
sive emulator to mimic the response of the computationally
demanding CFD simulator.

2.2. Surrogate-based optimization—Multi-fidelity modeling

In complex engineering design problems involving computa-
tionally intensive evaluations, surrogate modeling is a promising
tool, which provides a computationally expedient approximation
of the original problem. It starts with design of experiments (DoEs)
that is to generate sampling points for the calibration of the surro-
gate model. Popularly used surrogate modeling approaches include
polynomial chaos expansions (PCEs), Gaussian process regression,
and support vector regression (SVR) [18]. In this study, surrogate
models for two aerodynamic objectives are individually calibrated
by running a limited number of CFD simulations, and they are used
for evaluations of the aerodynamic objectives during the
optimization.

Observations from CFD models may involve data sources of
multiple fidelities with different computational demands. With
regard to CFD simulations of the wind flow around bluff bodies
at high Reynolds numbers, CFD analyses can be either carried out
through low-fidelity simulations, such as Reynolds-averaged
Navier–Stokes (RANS), or high-fidelity simulations such as large
eddy simulation (LES) [19]. Currently, RANS is the workhorse of
CFD while LES is gaining attraction as more computational
ic shape optimization problem.



Fig. 3. Schematic of aerodynamic shape optimization on a computational platform. DoEs: design of experiments.
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resources are becoming available [6]. However, RANS model can
result in noticeable modeling errors because the unsteadiness of
the turbulence is averaged out in Reynolds-averaged approaches
[19]. Therefore, it is necessary to blend the information sources
from multiple sets of CFD data to enhance the predictive accuracy
of the surrogate model while maintaining the computational effi-
ciency. Modern statistical learning techniques such as multi-
fidelity surrogate modeling is a powerful tool for model calibration
from multi-fidelity CFD simulations [20] as sketched in Fig. 3.

The multi-fidelity surrogate models is being used here in the
optimization phase to provide the computationally tractable esti-
mates of the aerodynamic objectives in the design space. Optimiza-
tion algorithms guide the search of the optimal geometric
configurations with the best aerodynamic performance to inform
the building design. The optimal solutions are plotted on the Pareto
front, from which a selected one with the blue circle in Fig. 3 rep-
resents the cross-section with chamfered corners. As this proposed
digital design tool is being developed by testing the concept using
a sectional model of the building, it will be further expanded to a
full-blown 3D tall building, in which a variety of building forms
that vary along the height as well as more refined metrics like
the spectra or the peak value may be introduced in the design
objectives. Although most slender tall buildings with symmetric
structural shape and structural systems do not exhibit torsional
response at the level that they become a controlling issue, the con-
sideration of the torsional load effects would also be included in
our digital design framework in the future in view that this compo-
nent of the wind-induced loads could be critical for irregular and
complex building configurations.
3. Structures with dynamic facades

As the ambient wind environment is changing in real-time, the
aerodynamic shape optimization strategy used during the concep-
tual and preliminary design stages of the building as introduced in
the above section may not be optimal in all conditions. To venture
beyond such static shape optimization, autonomous dynamic mor-
phing is advanced in this study. Tall buildings equipped with sen-
sors and innovative actuators could potentially mimic in-flight
changes birds undertake to adapt their profile substantially to
enhance the aerodynamic performance in a complex wind environ-
ment. Possibilities to enable such functions require intelligent sys-
tems to manifest control of the building envelope. Design of these
intelligent systems involves interdisciplinary backgrounds from
material science, computer science and mechatronic engineering.
The following will provide a background of such intelligent
systems.
3.1. Morphing systems

Morphing systems act as ‘‘muscles” to enable buildings to posi-
tion their profiles into the desired configuration under certain con-
trol laws. Intelligent actuation systems can be classified into two
categories: innovative structural materials and responsive
mechanical systems.

Smart structural materials can provide a biomimetic building
surface that senses environmental stimuli and conforms to
intended functionality. Therefore, these materials must be embed-
ded with programmable features to allow for the controlled shape
changes through the underlying physical properties such as acous-
tic, electromagnetic, or thermal materials [21]. Smart materials can
be made of shape memory alloys (SMAs) that deform under varia-
tions of temperature due to changes in elasticity, piezoelectric
materials that can reconfigure when a voltage is applied, or mag-
netic materials that undergo shape changes in the magnetic field
[22]. There has been a significant amount of research in applying
these materials to a variety of engineering disciplines. For example,
to morph the aircraft wing, piezoelectrics or SMAs can convert



Fig. 4. US Defense Advanced Research Projects Agency (DARPA) Smart Wing using SMA actuation. Reproduced from Ref. [24] with permission of SAGE Publications, �2004.
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electrical current into the mechanical responses in order to
enhance the aerodynamic performance across flight conditions
[23]. Fig. 4 shows a full morphing wing that was built by bonding
SMAs to the surface of the wing as actuators [24]. Autonomous
solar panel arrays that are embedded with the distributed shape
memory polymer actuators can achieve self-expansion when the
surrounding temperature increases [25]. A building surface that
is fabricated with thermobimetal materials is capable of self-
shading to maintain the indoor thermal comfort [26]. Manufactur-
ing of those smart materials has been revolutionized by advances
in three-dimensional (3D) printing, or even four-dimensional
(4D) printing of self-assembly programmable materials in building
design [27].

Indeed, many efficient designs using smart materials are
inspired by nature through gaining insights into the functional sur-
faces of animals or dynamic mechanisms in plants [28]. For exam-
ple, the shark skin has the capability for the drag reduction when it
swims in water as the dermal denticles or skin teeth shaped like
small riblets are aligned with the flow to bring the drag-
reduction benefits [29]. Applications of the shark-skin-inspired rib-
let surfaces include racing swimsuits, boat hulls, and airplanes. An
example of biomimicry from plants could be the spruce cones as
these can respond to humidity changes in Fig. 5(a) [28]. Analogous
to this concept, the design of a self-shaping architecture named
Urbach Tower in Fig. 5(b) utilized moisture change in wood to
generate curvatures through shrinking forces [30]. Thematic
Pavilion in the Republic of Korea introduced the facade system that
can morph into a number of animated patterns [31] as shown in
Fig. 6(a). The inspiration to build such the kinetic facade comes
Fig. 5. Biomimetic design. (a) Spruce cones with different humidity conditions; (b) a self-
permission of Elsevier, �2017; (b) reproduced from Ref. [30] with the author credit ‘‘IC
from the moving mechanism in the flora world for the pursuit of
aesthetics by architects as well for the control of the entry of light.

In the context of responsive mechanical systems, two main
groups can be further distinguished based on their kinematics:
deformable structures referring to the distributed hingeless struc-
tures that can deform in their entirety, and rigidly-linked struc-
tures in which the rigid elements are connected by hinges to
enable relative motions [32]. Deformable structures can be compli-
ant, tensegrity, and pneumatic structures. Compliant structures
obviate the use of hinges and are free of backlash, resulting in a
smooth shape change and the reduction in stress concentration
[32]. As the compliant structures deform under their flexure such
as their elastic properties, this type of structures allows for rela-
tively small deformation compared to rigidly-linked structures.
Tensegrity structures are composed of members either in pure ten-
sion or pure compression for load equilibrium. These structures
equipped with actuators can morph their shapes by adjusting their
self-stress (stiffening or softening) of the members as shown in
Fig. 6(b) [33]. Accordingly, in response to the changes of external
loading conditions, the new geometric configuration can be identi-
fied through form-finding approaches to efficiently redirect load
transmissions [34]. Pneumatic structures can adapt their shapes
through air pressure changes, which can be formed in a plethora
of shapes. They are lightweight, but have relatively low deploy-
ment accuracy. Fig. 6(c) shows Tokyo Dome that falls in the cate-
gory of pneumatic structures [35].

Another type of rigidly-linked structures that allows for large
deformation and various forms of deployment due to its flexibility
includes telescopic structures that progressively change
shaping timber tower through moisture change. (a) Reproduced from Ref. [28] with
D/ITKE—University of Stuttgart”.



Fig. 6. Real-world applications of morphable structures. (a) Thematic Pavilion; (b) tensegrity structural systems; (c) Tokyo Dome; (d) rigid origami structures. (a) Reproduced
from Ref. [31] with permission of SOMA Architects,�2012; (b) reproduced from Ref. [33] with the author credit ‘‘Easy K-Kenneth Snelson� Robin Capper via Flickr Licence CC
BY-NC 2.0”, �2018; (c) reproduced from Ref. [35] with permission of GNU Free Documentation License; (d) reproduced from Ref. [40] with permission of the author Dr.
Tomohiro Tachi.
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cross-sections, articulated systems with rigid ribs linked with
fully-rotated joints, or foldable structures fabricated by folded pan-
els and rotated bars. These systems have been envisaged in the
deployment for aircraft, aerospace structures, and civil structures
[36,37].

The origami-inspired structures and scissor-like structures have
become a source of inspiration for designing deployable structures
nowadays. The idea comes from paper folding that is an ancient art
form of origami [38]. A foldable origami structure consists of
piecewise linear surfaces that are linked with rigid panels and
hinges [32]. They can be deployed at different stages with con-
trolled folding patterns to create versatile geometries as presented
in Fig. 7 in which foldable tubes are devised [39]. Real-world
origami-inspired architectures have been designed such as in
Fig. 7. Shape variations of origami tubes at different stages of deployment.
Fig. 6(d) [40] which shows the geometry of the origami structure
in kinetic motion as well as the deployable facade on Al-Bahr Tow-
ers in Fig. 1. Although the origami-inspired structures are yet to be
fully embraced at the building scale, the current studies have
opened the door to unfold their use in altering the exterior shape
of civil structures in the future [38].

3.2. Structural control algorithms

In addition to challenges arising from designing reliable morph-
ing actuation systems based on the knowledge from material
science and mechanical systems, an autonomously morphing sys-
tem also faces challenges in the context of control algorithms to
send necessary signal for real-time actuation. To successfully
implement the design of intelligent structures, a key issue is the
control strategies that serve as the central nervous system. The
objective of developing control algorithms is to accurately process
the instantaneous inputs from sensing systems and send com-
mands to actuation systems. If the closed-loop control system is
employed, the measurements should be collected for feedback
control. Briefly speaking, the major components in the control
algorithms could include model prediction, feedback control, and
reinforcement learning.

In the context of model prediction, optimization algorithms
such as genetic algorithms can be applied to forecasting the opti-
mal building configuration by minimizing the cost functions that
are associated with any quantities of interest. Nonetheless, the
computational time is often too long to process the large-scale
optimization problems involving high-dimensional inputs and out-
puts. To overcome this issue, deep learning (DL) that is composed
of multiple processing layers to learn representations of the data is
more efficient to solve large-scale problems. This technique is a
branch of machine learning methods and has made breakthroughs
in image processing, object detection, speech recognition, and
many other disciplines owing to its capabilities that can capture
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the intricate structures of the data, especially in high-dimensional
problems [41]. To build multilayer architecture, DL involves for-
ward propagation, computation of the measurement error between
the output scores and the desired pattern of scores, as well as back-
ward propagation in which the gradient information is used to
update parameters.

Another strategy that can be adopted to enhance the predictive
performance of the system is reinforcement learning (RL). The
advent of RL agents takes a significant step towards producing fully
autonomous systems that can interact with environments to learn
optimal behavior [42]. In RL, the system learns how to act when
reward or punishment signals are given [43]. For example, RL
applied to autonomous driving has enabled to plan the navigation
of the vehicle to avoid unwanted situations (punishment) and gene-
rate good driving commands (reward) [44]. Overall, it is a learning
paradigm to learn the optimal mapping from states to actions in
order to maximize rewards [45]. Deep reinforcement learning that
combines DL and RL agents include Deep Q Networks (DQL) which
operates on discrete actions and Deep Deterministic Policy Gradi-
ent (DDPG) which estimates a deterministic target policy in continu-
ous action spaces [46]. These have been used with some successes
in robotics where control policies for robots are learned from cam-
era inputs [42], natural language processing, as well as morphing
aircraft [45] apart from the aforementioned autonomous driving.

Control feedback methodologies can also be combined with the
use of predictive models as they have proven to drastically enhance
the system performance. There are some popularly used control
feedback methods such as a proportional–integral–derivative
(PID) controller, fuzzy control, and model predictive control
(MPC) [47]. For instances, PID consists of integral, proportional,
and derivative feedback that are based on past, present, and future
control error, respectively [47]. The balance of these three compo-
nents is achieved by loop tuning. MPC utilizes an explicit process
model to predict the future response of a process by minimizing
an objective function which quantifies the difference between the
predicted and reference responses. This technique has been used
to civil engineering applications such as acceleration feedback con-
trol for a wind-excited tall building [48]. Different controllers can
be assessed based on their performance, tuning, and ease of use,
and so on, in a control system. The feedback control has beenwidely
used in motor drives, automotive and flight control, to name a few.
4. Autonomously morphing structures

As summarized in Section 3.1 that morphing techniques have
been applied to esthetic design or shading and ventilation control
of a structure, they have not been explored in the form design of
structures against dynamic wind loading conditions. In this section,
the concept of morphing wind-resistant structures is proposed to
permit a building to intelligently morph its profile to curb the
sources of dynamic wind load excitations in urban areas with clus-
ters of tall buildings. A cyber–physical system that integrates the
computation with physical processes [49] is fully embraced in the
networked autonomous morphing of a building’s profile. To
empower the building with intelligence that can sense the sur-
rounding wind environment, the building is equipped with dis-
tributed sensor network, which would help mimic a sensing
building skin. Actuators akin to muscles would allow buildings to
position their profiles into the desired shape, for example, a twisted
form or corner modifications. Advances in high-performance com-
puting (HPC) and machine learning techniques are being fully uti-
lized to design a computational platform for intelligent sensing,
computing, and actuation of the building. Challenges that arise
due to technical complexities and safety concerns in autonomous
morphing have to be understood. Innovations in civil engineering,
computational sciences, and many other disciplines nowadays will
aid in full realization of this goal. The proposed cyber–physical sys-
tem is divided into several key components which will be intro-
duced in the following sub-sections.

4.1. Sensing

The rapid development of sensing technologies has been push-
ing forward their potential applications to the design of dynamic
facades of buildings. This technology is involved in broader topics
such as the Internet of Things (IoT) [50] in which objects equipped
with sensors and actuators can be interconnected with each other
in the digital world and provision of communication by the user is
available. IoT has been proposed in many scenarios. For example,
in the transportation and logistics domain, the transported goods
instrumented with tags and sensors can be kept track of for updat-
ing their status [50]. The paradigm of IoT can also be deployed into
the design of smart city systems, in which data for humidity, tem-
perature, and light of the city, which are collected from the dis-
tributed wireless sensing network, can be monitored day and
night [51]. In structural engineering, advances in wireless sensing
technologies [52] and data acquisition [53] are the key components
for structural health monitoring. Data associated with the modal
parameters and physical parameters of the structure is collected
from the sensing network to perform structural condition assess-
ment and damage detection. In the real-time structural health
monitoring of the Burj Khalifa, an IoT based SmartSync system
was implemented [54], in which the sensing and data management
systems were connected to the backbone of the system via virtual
cables and the system could be interrogated and managed remo-
tely. The IoT concept will be employed in the morphing system
when scaled to the full-scale application as the management sys-
tem would rely on the Internet for connectivity and communica-
tion among localized modules of sensing, computing, and
actuating.

As for the morphing structures, the distributed sensors such as
anemometers, strain gauges, and global positioning system (GPS)
installed in the building would assist detecting wind speed level,
surface pressures, and building responses as shown in Fig. 8. This
provides the information on the short-term variations of wind
environments. In addition, meteorological data and satellite
images accessed online can serve as a supplementary knowledge
source to guide morphing. The information collected from network
sensing is used as the input knowledge of the deep neural net-
works (DNNs) for data analytics. Therefore, fusing sensing informa-
tion through selecting key features to represent surrounding wind
environment and building information is critical to process the
morphing phase.

4.2. Actuation

Innovative actuating systems can be employed to morph the
building into the desired form in real-time. For example, articu-
lated mechanism or intelligent digital materials such as SMAs
embedded with actuators can be attached to the building facade
for corner modifications. A morphing structure can also utilize
the origami concept to achieve the twisted effects through deploy-
ment using controlled folds. The rigidly-linked truss structures
enable the building to be morphed into the tapered mode. Fig. 8
provides a sampling of candidate morphing techniques that are
promising for this application to facilitate morphing of structures.

4.3. Computations

Computational algorithms empower the structure with AI and
connect sensing inputs and the eventual actuating outputs. In this



Fig. 8. Cyber–physical sensing control and actuation system. PC: personal computer.
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study, it mainly involves two components: predictive model that is
used to predict the optimal building form at the future time step,
and control feedback for closed-loop control. In an attempt to
determine the control strategies, RL agents are employed to
accomplish the goal of predicting the optimal shape given the data
collected from the distributed sensor network. Two components
are essentially included in RL: state and action. As shown in
Fig. 9, an agent or a policy observes a state st from an environment
at the time-step of t, and generates an action at to interact with the
environment at t + 1 in order to return the instantaneous reward Rt

as feedback. Upon observing sequences of actions, the RL agent is
able to learn good and bad behaviors on the long term through
optimizing the policy based on those cumulative rewards of each
sequence. Therefore, the goal of the RL agent is to maximize the
long-term reward function or value function which presents the
expected discounted sum of future rewards under a policy p in
order to arrive at an optimal performance at each time step.

As for the application of RL in autonomously morphing struc-
tures, the state st is defined as the sensing information of the exter-
nal wind environment, and the optimized action at generated by
the policy p represents the aerodynamically favorable building
form in response to the current state st . For example, if the objec-
tive is to minimize the drag coefficient in real-time denoted as
Cd tð Þ; the instantaneous reward function Rt can be defined as

Rt ¼ �Cd tð Þ ð1Þ
Hence, the corresponding Q-value function Qp employed in

DDPG algorithm can be expressed as the expected discounted
sum of future rewards under a specific policy ph by [55]
Fig. 9. The actor–critic architecture.
Qp s; að Þ ¼ Ep
X1
k¼0

ckrtþkþ1 st ¼ s; at ¼ að Þ phj
" #

ð2Þ

where E is a mathematical operator to calculate expectation;
rt ¼ EpRt . c is a discount factor in time and normally within the
range between 0 and 1. s and a represent the current state and
action, respectively. Qp s; að Þ needs to be maximized at each time
step in terms of the action at . In other words, the optimal building
configuration at time t maximizes its value function.

To solve this maximization problem, the value function can be
written by its Bellman equation as [56]

Qp s; að Þ ¼
X

P s0 s; ajð Þ Rt s; a; s0ð Þ þ cQ s0; a0 ¼ ph s0ð Þð Þ½ � ð3Þ
where P is a mathematical operator to calculate the probability; s0

and a0 represent the next state and action, respectively. Hence,
the maximization problem in search of the optimal Q-value func-
tion Q �

p can be formulated based on Eq. (3) as [56]

Q �
p s; að Þ ¼ maxQp s; að Þ ð4Þ
The optimal policy p� can then be obtained by

p� sð Þ ¼ argmaxQ �
p s; að Þ ð5Þ

To train the RL agent, DDPG as mentioned in Section 3.2 is
selected as a RL agent in this study. The rationale behind using
DDPG is that the actuation outputs of the dynamic facade of the
building can be considered continuous. Therefore, DDPG which
can achieve continuous space control is more suitable to be applied
to this study. It involves the training of two neural networks: the
actor and critic. As seen in Fig. 9, the actor is used to predict the
action at the current time step from a continuous action space.
The critic estimates the value function of the current state. To train
DDPG, the gradient of the value function in the critic can be com-
puted stochastically by Monte Carlo sampling of the trajectories of
the flow simulations by constantly morphing the building form at
the changing inflow conditions (Fig. 10). The value functions then
provide the temporal-difference (TD) error [56] to train the policy.

To compensate for prediction errors between the predicted and
the real building responses, control feedback is introduced in
autonomous morphing. The aerodynamic goals such as aerody-
namic forces on the predicted optimal building form are collected
at the future time step from sensing network, and the prediction
errors are then computed and used to adjust the optimal building



Fig. 10. Framework of the training process.
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form. In this study, we use MPC to achieve the closed-loop control
feedback. Fig. 8 provides a schematic of the proposed computa-
tional methodologies.

4.4. Computational mock-up experiment

In this section, the proposed cyber–physical system is mocked
on a computational platform to present a proof of the concept
advanced in this study. The case of aerodynamic shape tailoring
with respect to the cross-sectional shape of the building as illus-
trated in Section 3 is presented. The autonomous morphing tech-
niques are introduced to allow reconfiguration of the building’s
cross-section in real-time to reduce the source of dynamic wind
loads.

The goal is to actively minimize the drag force acting on the
building through actively morphing the building’s profile akin to
a living facade. As for the database to train DDPG, aerodynamic
information of a wide range of building forms can be gathered from
various fidelities of data source including wind tunnel tests, com-
putational simulations, online datasets, and inputs from crowd-
sourcing. This collective, multi-fidelity database will serve as the
knowledge base to train RL to enable the predictive capabilities
of the aerodynamic properties for any building form. In this study,
we solely rely on the high-fidelity CFD simulations, i.e., LES to train
the policy concerning the quality of the data. The fusion of low-
fidelity simulation data and experimental data will be under inves-
tigation in our future work. In Fig. 10, ten epochs were used, in
which each contains m = 10 trajectories to compute the expected
value of the cumulative reward or the value function. Each trajec-
tory contains 100 sampled simulations (T = 999) to calculate the
instantaneous reward function that is formulated in Eq. (1). The
discount factor c is taken as 0.95 [57]. The optimizer named Adam
[58] is used for training both the actor and critic, in which the
learning rate is 0.001. It is worth mentioning that the training data
involving the total number of epochs is not sufficient enough
regarding the fine-tuning of the RL agent and thus obtaining robust
predictions of the dynamic building form that offers the best per-
formance. For further refining this proof-of-the-concept work,
one may draw upon more published datasets collected from
numerical and experimental tests to enrich our training database,
through which more promising convergent structures of the neural
networks in DDPG and the robust prediction of the actuation out-
puts can be reached. However, the contribution of the current work
is to demonstrate the feasibility of the RL’s application to morph
the dynamic facade of the building.

Fig. 11 presents a schematic of the workflow on how the control
algorithm informs the morphing process. The state of the RL agent
is the sensing information observed from the wind velocity mea-
surements at multiple points approaching the building. In one epi-
sode, the time sequences of turbulent inflow velocities with the
turbulence intensity of 20% were digitally simulated at the inlet
of the computational domain. At each time instant, the drag asso-
ciated with the instantaneous reward function was computed by
integrating the pressure data on the building surface. In this study,
the morphing system is implemented in near real-time, which is
achieved by selecting a narrow moving window to smoothen the
constant updating of the state and reward information as given
in Fig. 10. The selection of the window size is not generic and
therefore quite problem-specific. On the one hand, if the size is
excessively small, the prediction output will be highly affected
by the noise [57]. On the other hand, a large window size will
impede the effectiveness of the real-time control of the system.
In addition, it should be noted that the sensing inputs and the aero-
dynamic quantities of the building can be either measured or esti-
mated based on limited measurements using anemometers,
pressure sensors, and accelerometers in a built environment. The
actuation output of the model predicts the optimal shape of the
building cross-section that leads to a minimal drag coefficient.

Based on DDPG, the predictive model is cast into two trained
DNNs: One is to anticipate the future changes in the drag coeffi-
cient, i.e., value function in the critic, followed by the actor that
is used to optimize the building’s cross-section at given the gradi-
ent information of the value function from the critic. The design
space of the actuation outputs provides the allowable displace-
ments of the points that control the external geometry of the build-
ing cross-section as shown in Fig. 2. The neural networks explore in
this continuous actuation space to search for the optimal solution
guided by the well-trained policy. As it can be seen in the outputs



Fig. 11. Schematic of the control algorithm for morphing a building’s cross-section.
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of the actor–critic approach from Fig. 11, the green color outline of
the profile shows the optimized geometry with chamfered corners,
which is predicted by the RL agent. In addition, to morph into the
desired cross-sectional configuration, SMA actuators can be
installed to allow the ribs to control their length by way of intro-
duced temperature change.

The optimized building’s cross-section can be validated through
the LES simulation, from which its true drag coefficient can be
directly measured. To conduct the closed-loop control, MPC is
employed by assigning the task of minimizing the difference
between the measured and predicted drag coefficient through
further adjusting the cross-sectional shape. The optimal
cross-sectional shape after carrying out MPC operation is then
updated, which is shown in the green line profile in Fig. 11. This
shape configuration is the ultimate output of the proposed control
system at one time iteration. The building section is then morphed
into the desired facade form guided by the MPC outputs and
interacts with its external wind environment to generate the
reward function in the sequential time iteration.

With the aid of the proposed computational platform, the pre-
liminary results are obtained for the purpose of validating the
autonomous morphing concept. This framework will be further
embellished by considering various types of sensing information
and higher-dimensional actuation outputs. In view that mobilizing
a large-scale mechanical system instantaneously would be chal-
lenging and constrained by other environmental issues like water
ingress, a sub-assembly of the system involving sensing, control
and actuation are planned to physically demonstrate the proof-
of-the-concept using morphable skin attached to a scaled electro-
mechanical actuation system, in which the effect of the time
response for actuating the large-scale morphing system on the
computing algorithmwill be taken into account. Another challenge
in technology is the development of the facade system that can
morph while ensuring that the overall building envelope does
not permit any water penetration. Distributed morphing technol-
ogy for managing local or certain levels of the building facade mor-
phing may be more promising to ensure leakage challenge as well
as actuation power needed and smaller mass of the facade weight
to be shifted. Such local changes in shape can also add to reducing
wind load effects through influencing the spatiotemporal coher-
ence of the loading, but their exact contribution needs to be further
examined.

Increasing the complexity of the morphing system can include
considering multiple aerodynamic objectives such as lift and
torsional forces apart from the drag, or adopting more complicated
building configurations. This faces challenges by the limited data
and also the quality of the published data at the current stage.
Nonetheless, the potential and capability of deep reinforcement
learning (DRL) to successfully analyze the surrounding wind field
and guide autonomous morphing of the building facade are
demonstrated through this illustrative example. This study offers
a guide to early followers to gradually implement more complexi-
ties in building design objectives to be responded to by the morph-
ing system. These would offer pathways to further explore the
fusion of sensing and computing, and actuation to the ultimate
goal of making it a practical real-world building design and con-
struction practice. It is envisioned that RL would be a powerful tool
in future building design practice on the revolution from the static
to dynamic facades once the large and high-quality dataset
becomes popular and concomitantly available. And we are also
committed to sharing our data and computational workflows as
open-source in the future, which eventually would enable the RL
applications to be fully embraced in civil engineering practice.
5. Concluding remarks

Urban areas are vulnerable to wind-related impact on the per-
formance of tall buildings with attendant economic losses as a
result of increasing occurrences of wind events and associated
wind load effects. This may be in part associated with climate
anomalies and in part due to the enhanced interference effects
caused by clustering effect of buildings. With burgeoning advances
in computational design, AI, sensing and actuation, and cyber–
physical infrastructure, it is the most appropriate time to explore
buildings topologies of the future with dynamic facades that
actively adapt profiles to counter the effects of changing wind
environment. This would enhance building performance in near
real-time or as desired under changing wind environment with
immediate applications to bridges and other structures. Autono-
mous morphing of buildings can be conceivably managed through
merging with urban sensing and computing networks that cur-
rently exist. This paper offers a realizable glimpse of a proposed
cyber–physical system to achieve autonomous morphing with
the knowledge fusion across urban sensing and data analytics.
Results from the computational mock-up provided a proof-of-
the-concept for using DRL and MPC to control the morphing sys-
tem for the cross-sectional configuration of the building. The initial
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findings offer enormous potential in using AI agents and modern
morphing technologies to mitigate wind-induced effects, thus con-
trolling their impact on the performance and safety of civil
infrastructures.
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