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Cardiovascular disease is a leading cause of death throughout the world. The demand for new thera-
peutic interventions is increasing. Although pharmacological and surgical interventions dramatically 
improve the quality of life of cardiovascular disease patients, cheaper and less invasive approaches are 
always preferable. Biomaterials, both natural and synthetic, exhibit great potential in cardiac repair and 
regeneration, either as a carrier for drug delivery or as an extracellular matrix substitute scaffold. In this 
review, we discuss the current treatment options for several cardiovascular diseases, as well as types 
of biomaterials that have been investigated as potential therapeutic interventions for said diseases. We 
especially highlight investigations into the possible use of conductive polymers for correcting ischemic 
heart disease-induced conduction abnormalities, and the generation of biological pacemakers to im-
prove the conduction pathway in heart block.  
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1.  Introduction

According to the Public Health Agency of Canada’s Economic 
Burden of Illness in Canada report, cardiovascular disease-related 
physician care, hospital care, and drugs cost 11.7 billion Canadian 
dollar in 2008, and was the largest burden on the health system 
[1]. Likewise, cardiovascular disease is the leading cause of mor-
bidity and mortality worldwide, and significantly impacts qual-
ity of life [2]. Currently, there is no cure for key cardiovascular 
diseases such as myocardial infarction (MI) and arrhythmia, as 
the heart has a very limited innate capacity for repair. Available 
therapies such as pharmacological interventions, coronary artery 
bypass graft surgery, and ventricular assistant devices have sig-
nificantly improved patients’ quality of life and prolonged their 
longevity [3–5]. However, new therapeutic interventions with 
lower cost and higher efficacy are still required for the future. 

The use of regenerative medicine to treat cardiovascular 
diseases has emerged as a research topic in the past few dec-
ades. Furthermore, recent advances in genomics and molecular 

medicine have brought the concept of personalized treatment 
for cardiovascular disease to the fore [6]. The advent of human- 
induced pluripotent stem cells (iPSCs) opens a new chapter for 
regenerative medicine because they are a potential cardiomyo-
cyte source [7]. Indeed, human iPSC-derived cardiomyocytes have 
been engineered into cell sheets, which significantly improved 
cardiac function when implanted into infarcted rat hearts [8].  
iPSC-derived cardiomyocytes have also been used to study cardiac 
ion channel pathology and arrhythmia pathogenesis mechanisms 
in vitro [9]. However, the limited survivability of implanted stem 
cells remains a major obstacle to cardiac regeneration.

Bioengineering has the capacity to alleviate this problem. Bio-
materials can be delivered alone, or serve as a scaffold or carrier 
for cells or growth factors [10–12]. The therapeutic potential of 
both natural and synthetic biomaterials has been demonstrated 
in animal models of MI and peripheral artery disease (PAD) [13]. 
Specifically, the application of injectable biomaterials results in 
decreased left ventricular wall dilatation, increased angiogenesis, 
enhanced endogenous tissue repair via endogenous stem cell re-
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cruitment, and the preservation of cardiac function [12,14]. 
In this review, we focus on cardiovascular diseases that in-

duce conduction abnormalities and their current interventions; 
biomaterial types that have been investigated in cardiovascu-
lar research; and the potential of these biomaterials for future 
therapeutic intervention. Since current research focuses largely 
on improving cardiac function and cardiac tissue regeneration, 
relatively little has been done in terms of evaluating conductive 
polymer potential for correcting cardiac event-related arrhyth-
mias and conduction block in vivo. We thus specifically explore 
the potential of conductive polymers to correct arrhythmias and 
improve conductivity in the infarcted heart. Future challenges in 
translating conductive polymer work from bench to bedside will 
be examined as well. 

2.  Regenerating the injured heart

2.1.  Cell therapy treatment of ischemic heart disease

Coronary artery disease (CAD) is the most common type of 
heart disease and the leading cause of death around the world 
[2]. Coronary arteries supply oxygenated blood and nutrients to 
the heart muscle. CAD is caused by the deposition of cholesterol- 
containing plaques in the arterial wall, resulting in vessel 
wall-thickening and narrowing of the vascular lumen. The nar-
rowing of coronary arteries leads to decreased blood flow and 
causes cardiomyocyte ischemic injury. Patients with decreased 
blood flow to the heart experience chest pain (angina), shortness 
of breath, and limited exercise capacity. A complete blockage of 
the vessel causes MI, leading to cell necrosis and massive loss 
of cardiomyocytes [15]. The current standard intervention for 
ischemic heart disease centers around lifestyle modification, 
pharmacological interventions, and surgical interventions [16]. 
Patients who do not respond well to all available treatments may 
progressively develop heart failure, which requires a heart trans-
plant.

Cell therapy (in which cellular material is injected into animals 
or patients) has emerged as a potential strategy for treating MI. 
Multiple candidate cell types have been proposed and investigat-
ed, such as bone marrow mononuclear cells [17,18], embryonic 
stem cells [19,20], skeletal myoblasts [21,22], endothelial progen-
itor cells [23], and cardiac stem cells [24,25]. Although improved 
cardiac function was observed in both animal and human studies 
[26–28], several obstacles remain, such as low cell retention/en-
graftment, cell delivery efficiency, electromechanical integration, 
and long-term safety [29–33]. Improving these elements is crit-
ical for future cell therapy research. Biomaterials may be the an-
swer, as they serve as excellent scaffolds for cell delivery and tis-
sue engineering. Cells can be either mixed with biomaterials and 
delivered to the injured site directly or cultured on biomaterial- 
based scaffolds for future transplantation [34,35]. 

2.2.  Biomaterials in cardiac repair and regeneration

In order for biomaterials to be feasible for cardiac repair, they 
must be biocompatible, be biodegradable, reduce local microen-
vironment hostility, persist for a sufficient time period to facili-
tate cell engraftment and integration with native tissue, and act 
as a reservoir for the slow release of bioactive molecules [36–38]. 
Both natural (gelatin [39], collagen [40], alginate [41,42], chitosan 
[43], and fibrin glue [44]) and synthetic (poly(lactic-co-glycolic 
acid) or PLGA [45], carbon nanotubes [46], and polyurethane [47]) 
biomaterials have been investigated as candidates for cardiac re-
generation [37]. 

2.3.  Natural biomaterials

A biomaterial can be introduced to the heart as an injectable 
hydrogel or a patch [48]. Collagen, a major component of the ex-
tracellular matrix (ECM), is one of the popular natural materials 
used in cardiac repair. Miyagi et al. [10] investigated the effect of 
a collagen patch as a slow-release reservoir of the vascular en-
dothelial growth factor (VEGF)-165 to promote vascularization in 
a right ventricle defect rat model. They found that the collagen 
patch with immobilized VEGF enhanced the growth of endothe-
lial and bone marrow cells in vitro. A VEGF-collagen patch, when 
implanted onto a defective right ventricular free wall of the heart, 
resulted in elevated angiogenesis and ventricular wall thickness 
when compared with a control collagen-only patch. These find-
ings indicate that growth factor immobilization onto a collagen 
patch improves cardiac repair via the promotion of cell recruit-
ment and proliferation [10]. A collagen patch alone has been 
shown to preserve infarcted heart contractility, attenuate adverse 
remodeling, and improve heart function. It did this by dimin-
ishing infarct region fibrosis, supporting blood vessel formation 
between the infarct region and the patch, and attracting various 
native cells (e.g., smooth muscle cells, epicardial cells, and imma-
ture cardiomyocytes) to populate the patch [49]. Collagen is also 
used as a cell carrier to deliver various cell types to infarct regions 
after infarction. Frederick et al. [50] have shown that vitronec-
tin/collagen scaffold seeded with endothelial progenitor cells 
induced neovasculogenesis and preserved ventricular function 
post-MI in a rat.

Chitosan is the second most abundant polysaccharide in 
nature, and has been widely used in agriculture, food and nu-
trition, environmental protection, and material sciences [51]. 
The chitosan gel has a porous sponge structure [52], and can be 
used as a cell scaffold [53] or carrier for controlled and localized 
drug delivery [54]. Liu et al. [43] have shown that an injectable 
chitosan hydrogel enhanced stem cell engraftment and survival 
by improving oxidative stress in the ischemic heart through re-
active oxygen species scavenging and chemokine recruitment. 
A chitosan-collagen hydrogel has also been used to deliver an 
angiopoietin-1 analogue to enhance endothelial cell function and 
survival. Indeed, the angiopoietin-1 analogue-bound hydrogel 
mitigated endothelial cell apoptosis and stimulated endothelial 
cell tube-like structure formation [55]. Finally, implantation of 
a chitosan-hyaluronan/silk fibroin patch in an infarcted rat left 
ventricle (LV) resulted in reduced LV dilatation, increased wall 
thickness, and improved heart function [56].

Aside from collagen and chitosan, other natural biomaterials 
have also been investigated as candidates for cardiac regeneration 
therapy. Alginate is a polysaccharide derived from seaweed [57] 
and has been extensively investigated in wound healing, drug 
delivery, and tissue engineering [58]. Research investigating the 
effect of alginate implantation in MI models has shown that an 
injectable aliginate-hydrogel injected into the myocardium can 
be completely absorbed and replaced by connective tissue within 
6 weeks. It was effective in reinforcing scar thickness, attenuating 
adverse ventricular dilatation, and improving cardiac function, 
whether injected 7 days or 60 days after MI [41]. These results 
could be a useful reference for administration timing in future 
studies. The peri-infarct zone injection of an alginate-chitosan 
hydrogel was also shown to be effective in preventing LV remod-
eling and promoting tissue repair by reducing cell apoptosis and 
increasing angiogenesis in an acute MI rat model [59]. Fibrin glue, 
which is primarily made of fibrinogen and thrombin, is used to 
create a fibrin clot. It is usually used to repair left ventricular wall 
rupture secondary to acute MI. The glue can seal the ruptured 
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myocardium immediately and be naturally absorbed [60–62]. 
Christman et al. [44] investigated the effect of fibrin glue scaffold 
implantation on cardiac function preservation post-MI. Scaffold 
implantation resulted in the preservation of infarct wall thickness 
and cardiac function 5 weeks after injection in a rat model of  
ischemia-reperfusion injury [44]. 

2.4.  Synthetic biomaterials

Synthetic biomaterials are generally constructed from syn-
thetic polymers, metals, or a combination of both. Synthetic bio-
materials possess excellent strength and durability, but present 
increased toxicity, creating biocompatibility issues [48]. Like 
their natural counterparts, synthetic biomaterials are generated 
and used with the aim of serving as a reservoir for gradual and 
controlled drug delivery, and acting as a scaffold to support cell 
engraftment and integration. 

Polylactic acid (PLA), poly-glycolide (PLG), and their co-
polymer PLGA are commonly used synthetic materials. Muk-
herjee et al. [63] employed a nanostructured matrix made of 
poly(L-lactic acid), poly(ε-caprolactone), and collagen to mimic 
the native microenvironment of the myocardium. A nanoscale 
PLA-co-poly(ε-caprolactone)/collagen biocomposite scaffold was 
used to culture and support isolated rabbit cardiomyocytes. The 
results showed that adult rabbit cardiomyocytes attached to the 
scaffold exhibited growth and cell organization comparable to 
that found in native myocardium [63]. Insulin-like growth factor 
(IGF)-1 bound to PLGA nanoparticles was delivered to the peri- 
infarcted area immediately after MI. The results showed that IGF-
1-complexed PLGA nanoparticles prolonged IGF-1 retention in 
the tissue, reduced cardiomyocyte apoptosis, and improved LV 
function [45]. 

Carbon nanofibers have also been investigated for cardiac en-
gineering. Martins et al. [64] mixed conductive carbon nanotubes 
with chitosan to form a chitosan/carbon scaffold with similar 
elastic properties to native myocardium. This conductive scaffold 
not only supported neonatal rat cardiomyocytes survival in vitro, 
but also increased the expression of myosin heavy chain, troponin 
T, and connexin-43, which are involved in muscle contraction and 
electrical coupling and are important for the organization of cell-
cell electrical signal transmission [64]. Zhou et al. [65] also devel-
oped a carbon nanofiber/gelatin hydrogel scaffold that supported 
in vitro culture of neonatal rat cardiac cells and integrated with 
the host myocardium when implanted post-MI in the rat heart. 
Heart function as assessed by fractional shortening and ejection 
fraction evaluated by echocardiography was improved after hy-
drogel injection while progression of pathological deterioration 
(e.g., ventricular dilation) was inhibited [65]. 

Synthetic peptide-based biomaterials have also been inves-
tigated. Synthetic peptides are able to self-assemble into three- 
dimensional (3D) hydrogels with adjustable fiber dimensional 
properties and potential nanoscaling [66]. They can be directly 
injected into myocardium to improve the microenvironment for 
cell recruitment and survival [67], but also can act as a carriers 
for drug and cell delivery [68]. Tokunaga et al. [69] used the self- 
assembling peptide Puramatrix to deliver cardiac progenitor cells 
into border-zone myocardium after MI to ensure effective cell 
delivery and improve cell survival. In addition, self-assembling 
peptide nanofibers were used to deliver platelet-derived growth 
factor (PDGF) in a sustained manner in order to protect cardio-
myocytes from apoptosis and preserve cardiac function post-MI [70]. 

Polyurethane, a durable and flexible synthetic polymer, was 
synthesized into an elastomeric patterned film to match the 
physical and mechanical properties of native cardiac tissue and 

investigated as a scaffold for tissue engineering. Cardiomyocytes 
seeded on patterned polyurethane film were able to grow follow-
ing the film pattern and form a multilayered contractile tissue 
construct [71]. 

Despite the fact that clinical trials examining the application 
of biomaterial to cardiac diseases are scarce, a recent clinical 
study did report the clinical outcomes following 6 months of  
follow-up [72]. The authors found that alginate-hydrogel in ad-
dition to standard medical therapy (SMT) for patients with ad-
vanced chronic heart failure (HF) was more effective than SMT 
alone for improving exercise capacity and symptoms. The results 
from a year of extended follow-up for this clinical trial were also 
recently reported [73]. It was shown that alginate-hydrogel in 
addition to SMT was more effective than SMT alone for providing 
sustained 1-year benefits in exercise capacity, symptoms, and 
clinical status for patients with advanced HF. These data support 
further larger clinical evaluations of this novel therapy.

3.  Conduction abnormalities and arrhythmia

3.1.  Ventricular arrhythmias

MI is often associated with increased incidence of arrhythmi-
as, particularly ventricular arrhythmias [74,75]. Due to the limited 
regenerative ability of the heart, massive loss of cardiomyocytes 
post-MI leads to the formation of scar tissue, which is primarily 
composed of fibroblasts and collagen. Scar tissue has significantly 
decreased contractility and electrical signal conduction, leading 
to the formation of abnormal conduction pathways and the de-
velopment of conduction block. Ventricular arrhythmias, either 
ventricular tachycardia (VT) or ventricular fibrillation (VF), are 
very common in MI patients, and are the major cause of sudden 
cardiac death (SCD) [76]. In acute MI, the ischemic cardiomyo-
cytes in and around the infarct zone have altered electrophysio-
logical properties, which serve as a potential risk for developing 
re-entrant loop (a circular electrical pathway), a mechanism for 
sustaining ventricular arrhythmias. As the MI passes the acute 
phase and the scar starts to stabilize, the scar tissue actually 
serves as an anatomical block promoting the development of 
re-entrant loop, which is a trigger for SCD [76]. Although medi-
cal interventions significantly decrease morbidity and mortality, 
SCD accounts for 70% of deaths of outpatients with CAD and 
more than 50% of deaths in the total patient population [77,78]. 
Dyssynchronized contraction (a difference in the timing, or lack 
of synchrony, of ventricular contraction in the heart) resulting 
from VF leads to decreased hemodynamics, circulatory collapse, 
and the loss of cerebral function.

Current therapies for ventricular arrhythmias are based on 
an established understanding of arrhythmia triggers, such as 
electrolyte imbalance [79], anatomical changes, ischemia [74], 
hypoxia [80], and physical and mental exertion [81]. The primary 
goal of current therapy is to restore normal heart rhythm. Imme-
diate defibrillation and cardioversion is required for VF or pulse-
less sustained VT. The early administration of β-blockers (drugs 
designed to stabilize cell membranes and minimize the overall 
metabolic demands of the heart) is associated with a reduced 
incidence of VF [82,83]. Another clinical intervention is the use 
of an implantable cardioverter defibrillator (ICD), an electrical 
device designed to stop fibrillation and restore normal rhythm, 
which has been routinely used in patients with cardiomyopathy 
and survivors of sudden cardiac arrest (SCA) [78,84]. Despite the 
clinical use of ICDs for terminating arrhythmias in patients, VT 
or VF can still occur, and are associated with increased mortality 
and HF risk [85]. 
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3.2.  Atrioventricular (AV) block

Heart rate and cardiac contraction is controlled by the sinoatri-
al (SA) node located in the right atrial wall, which is a natural 
pacemaker that generates and sends electrical impulses through 
the atria. This signal is then slowed by the atrioventricular (AV) 
node, located in the inferior posterior region of the interatrial 
septum, before reaching the ventricles to allow for complete atrial  
contraction. The impulse then reaches the ventricles via the bun-
dle of His, which branches into right and left bundle branches 
and terminates in the Purkinje fiber system, facilitating synchro-
nized ventricular contraction [86]. An abnormality in any of these 
components will cause a conduction disorder, which affects the 
pumping function of the heart [87]. 

AV block is a conduction disease that occurs when the electri-
cal signal from the atria is partially or completely blocked by the 
AV node so that ventricular rhythm is decreased. Conditions such 
as neuromuscular disorders (e.g., muscular dystrophy) [88,89], 
systemic diseases (e.g., cardiac sarcoidosis [90] and amyloidosis 
[91]), myocardial ischemia/infarction [92,93], neoplastic disor-
ders (e.g., primary cardiac lymphoma [94]), and catheter ablation 
[95,96] can all cause abnormal AV conduction [86]. Disruption of 
electrical signal conduction can occur at the AV node and at the 
infra- or supra-AV node structures, as well as at the bundle of 
His and the bifurcation of the left and right bundle [97–100]. The 
consequence is that the atrial electrical impulse is either delayed 
or only partially propagated to the ventricles, which potentially 
results in HF and SCD if untreated [101]. 

Currently employed treatments for AV block vary depending on 
the etiology and symptomatology. While asymptomatic AV block 
requires no intervention, symptomatic AV block (either innate or 
exacerbated during exercise) is treated with pacemaker implanta-
tion [100,101]. Indeed, permanent cardiac pacing is recommended 
in patients with AV block unless there is a reversible cause of AV 
block or a contraindication for pacemaker implantation [101]. 

Improving cardiac function and controlling arrhythmias are 
equally important. The efficacy of current therapies is limited by 
the different disease presentation of patients [102]. Therefore, 
new therapies are required to terminate abnormal conduction 
pathways and improve patients’ survival. Conduction disorders, 
such as AV block and ventricular arrhythmias, may benefit from 
conductive biomaterials―polymers that exhibit high electrical 
conduction. Preliminary investigations have already revealed 
that conductive biomaterials have great potential for improving 
conduction abnormalities induced by ischemic heart diseases and 
conduction block. 

3.3.  Conductive biomaterials

Polyacetylene, an organic conductive polymer, was first dis-
covered and described in 1977 by Alan J. Heeger, Alan G. MacDiar-
mid, and Hideki Shirakawa. This discovery was recognized by the 
Nobel Prize in 2000 [103]. Conductive polymers are appealing not 
only because they exhibit electrical properties, but also because 
they are easy to synthesize, and are also biocompatible and bio-
degradable [104]. Conductive polymers have been used success-
fully as materials for biosensors, neural implants, drug delivery 
devices, and tissue-engineering scaffolds [105]. The conductivity 
of these polymers comes from their unique structure: a conjugat-
ed backbone formed by a series of alternating single and double 
bonds. These alternating bonds allow electrons to move freely 
between and within the chains [106]. The ability of conductive 
polymers to promote the generation of electrically active tissues, 
such as nerve tissue and heart tissue, has also been investigated 
[107,108]. 

There are many conductive polymers, such as polypyrrole 
(PPy), polyaniline (PANI), poly(3,4-ethylenedioxythiophene) 
(PEDT, PEDOT), polyazulene (PAz), and polythiophene derivatives 
[105]. Of these, PPy is one of the better-characterized polymers, 
having been extensively investigated in neuroscience and cardiac 
research. 

George et al. [109] generated a PPy-containing conductive 
implant designed for neural prosthetics to guide neural stem cell 
(NSC) differentiation and neurite elongation. They found that 
PPy-containing conductive implants promoted the growth of 
neurons and glial cells around the implant when sutured in a rat 
cerebral cortex [109]. A conductive laminin/PPy film was able to 
guide human embryonic stem cells into neural lineages for nerve 
regeneration and repair [110]. In addition, PPy mixed with the 
counter-ion of dodecylbenzenesulfonate (DBS) was found to sup-
port the survival of NSCs and guide NSC differentiation toward 
neural lineages [111]. 

Potential applications for PPy in cardiac research have also 
been investigated. Kai et al. [112] created a nanofibrous mem-
brane, composed of PPy, poly(ε-caprolactone), and gelatin, de-
signed to mimic the ECM, for cardiac tissue engineering. They 
demonstrated that this membrane promoted human cardiac 
myocyte attachment, proliferation, interaction, and expression 
of cardiac-specific proteins [112]. A 3D PPy-coated PLGA polymer 
scaffold has been generated for potential stem cell transplant 
after MI. This conductive polymer scaffold is biocompatible, sup-
porting the growth and proliferation of both cardiac progenitor 
cells and iPSCs. In addition, the PPy-coated PLGA scaffold could 
be electrically stimulated to modulate cell behavior [113]. PPy 
has also been shown to stimulate angiogenesis post-MI. Mihardja  
et al. [114] generated an alginate-PPy polymer and injected it 
into the infarct area, where increased angiogenesis was observed 
compared with saline-treated animals 5 weeks post-injection. In 
addition, myofibroblast infiltration was also increased in the in-
farct area [114]. 

To summarize, PPy conductive polymers not only provide suit-
able ECM support for cardiac cells, but also affect the biological 
behavior of cells. In tissue engineering combined with cell thera-
py, a conductive polymer-based cardiac tissue construct could be 
implanted in the heart post-MI to facilitate electrical signal con-
duction and integrate implanted cells with host cells. 

Another potential application of conductive polymers is as a 
biological pacemaker. Patients with conduction block or HF are 
treated by the implantation of an electronic pacemaker, which 
controls heart rhythm and contraction in order to maintain heart 
pumping function [115]. Although such devices have shown po-
tential in reducing mortality and hospitalization of patients, the 
fundamental problem—conduction block—is not yet solved be-
cause non-conductive tissue or an abnormal conductive pathway 
still exists in the heart. Research interest in developing a biolog-
ical pacemaker began two decades ago in response to challenges 
and limitations facing electronic pacemakers, such as battery 
changes, chronic infection, high surgical cost, and device adap-
tation in developing pediatric patients (e.g., chest and vascular 
size, child growth, and congenital heart defects) [116–118]. In a 
normal heart, the SA node is the trigger that sends an electrical 
signal to the substrate—cells that sense and receive this signal. A 
trigger-substrate connection is critical for organized pacing and 
conduction. A biological pacemaker would be able to integrate 
with the heart, and respond to endogenous stimuli calling for in-
creased/decreased cardiac activity [119]. In addition, implantation 
of a biological pacemaker would be minimally invasive, which is 
suitable for patients who have contraindications for electronic 
pacemakers [116]. Biomaterials play a role in biological pacemak-
er research by establishing communications between implanted 
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pacemaker cells and their substrate cells, integrating implanted 
cells, and labeling and tracking transplanted cells in vivo [120–
122]. Conductive polymers, as excellent biomaterial candidates, 
can act as an ECM to support cell survival while establishing 
electrical connections between cells (Fig. 1). As such, the devel-
opment of a conductive polymer-pacemaker cell combination has 
great potential to be the first step in creating a biological pace-
maker to be used in future therapeutics.

4.  Future challenges and directions

Biomaterials have great potential in cardiac repair and regen-
eration. The biocompatibility and biodegradation rate of most 
available biomaterials have been tested in different approaches 
by different groups. The future of biomaterials and tissue engi-
neering is moving toward finding the ideal biomaterial-cell type 
combination for tissue regeneration. Selection of optimal cell 
types/combinations is vital for the success of tissue engineering, 
as the heart is a carefully balanced milieu of cardiomyocytes, 
fibroblasts, endothelial cells, and smooth muscle cells. Many 
questions remain to be answered. The major concern of bioma-
terial application to cardiac disease is the possibility of creating 
a substrate for arrhythmia. Although there are few studies that 
specifically address this risk, a recent study did reveal that the 
degree of the electrophysiological changes depends on the spread 
characteristics of the biomaterials [123]. This study found that 
hearts injected with highly spread biomaterials showed no con-
duction abnormalities. However, the injection of a biomaterial 
exhibiting minimal interstitial spread may create a substrate for 
arrhythmia shortly after injection by causing LV activation delays 
and reducing gap junction density at the site of the injection. This 
work demonstrates that the site of delivery and interstitial spread 
characteristics are important factors in biomaterial application- 
associated arrhythmias. In addition, generating biomaterials with 
elastic and strength properties similar to the native myocardium 
is critical [124]. Minimizing the immune response to prevent 
the encapsulation of biomaterials or tissue constructs is another 
concern, as encapsulation prevents proper integration of trans-
planted cells with the native environment [125]. Since the heart 
is the largest bioelectrical source in the body [126], synthesizing 

conductive polymers, which may facilitate the synchronous beat-
ing of cardiomyocytes, will enhance communications between 
transplanted tissue constructs and the native myocardium. This 
will be critical, as electrical field stimulation increases protein 
organization, facilitates cell polarization, and enhances electrical 
signal propagation [107]. Finally, the optimal timing for introduc-
ing biomaterials or tissue constructs remains unclear, and is vital 
for potentially minimizing inflammatory responses while limiting 
scar tissue formation. 

Despite these challenges, biomaterial and tissue-engineering 
research holds great promise and has achieved much progress 
within the past two decades. The ultimate goal is to use biomate-
rial scaffolds in combination with appropriate cell types for par-
tial or whole organ (re)generation. This will ultimately reduce the 
need for organ transplant, correct currently irreversible patholo-
gies, and improve quality of life.
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