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Additive manufacturing (AM) permits the fabrication of functionally optimized components with high 
geometrical complexity. The opportunity of using porous infill as an integrated part of the manufactur-
ing process is an example of a unique AM feature. Automated design methods are still incapable of fully 
exploiting this design freedom. In this work, we show how the so-called coating approach to topology 
optimization provides a means for designing infill-based components that possess a strongly improved 
buckling load and, as a result, improved structural stability. The suggested approach thereby addresses 
an important inadequacy of the standard minimum compliance topology optimization approach, in 
which buckling is rarely accounted for; rather, a satisfactory buckling load is usually assured through a 
post-processing step that may lead to sub-optimal components. The present work compares the stan-
dard and coating approaches to topology optimization for the MBB beam benchmark case. The opti-
mized structures are additively manufactured using a filamentary technique. This experimental study 
validates the numerical model used in the coating approach. Depending on the properties of the infill 
material, the buckling load may be more than four times higher than that of solid structures optimized 
under the same conditions.

© 2016 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and  
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND  
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1. Introduction

Additive manufacturing (AM, also known as 3D printing) 
enables the fabrication of components with a geometrical com-
plexity far beyond what can be achieved with conventional man-
ufacturing technologies. Topology optimization, which is partic-
ularly known for creating lightweight mechanical components in 
the aerospace and automotive industries, provides a means for 
intelligently exploiting this design freedom, making these two 
technologies an ideal fit. So far, however, topology optimization 
approaches have only been adapted to a minor degree to the new 
opportunities and the manufacturing constraints relevant for AM. 
Infill is an example of a unique feature of extrusion-based AM 
methods. It allows the creation of structures that are composed 
of a solid shell with a porous interior, as opposed to completely 
solid components (Fig. 1). The authors of this paper have recently 

introduced the so-called coating approach to topology optimi-
zation [1]. While standard topology optimization approaches 
produce solid structures (Fig. 1(a)), the coating approach results 
in structures with a solid shell and a porous interior, exactly as 
when using infill (Fig. 1(b)). The coating approach offers no stiff-
ness improvement. However, as shown in this study, it results in a 
strongly improved buckling load, which is an important element 
of structural stability. We therefore demonstrate an adaption of 
topology optimization to AM that has great potential.

Topology optimized components achieved through a standard 
minimum compliance approach [2] do not take buckling into 
account. On the contrary, the approach results in tension/com-
pression-dominated configurations and avoids bending members. 
As the buckling load is closely related to bending stiffness (being 
proportional for the simple Euler column case), these structures 
may very well end up being failure-limited by the buckling load 
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rather than by the fracture strength of the material. The problem 
becomes increasingly pronounced for smaller volume fractions.

Several works have treated the possibility of including a buck-
ling constraint in the minimum compliance topology optimiza-
tion problem. The approaches suggested so far, however, have 
not produced convincing results, or are challenged by clustering 
of a high number of eigenmodes at the lowest eigenvalue (the 
buckling load) [3–6]. This clustering implies a need for computing 
a large number of eigenvalues, leading to a prohibitively heavy 
computational burden. Instead, the mandatory buckling analysis 
is usually performed as a post-optimization step rather than as 
an integrated optimization constraint. If the elastic stability of 
the component is found to be insufficient, a post-processing may 
be applied to improve the minimum buckling load; however, this 
process may lead to sub-optimal components.

Nature provides a number of examples of structures that have 
an intrinsically high buckling load compared to weight. The most 
obvious examples are animal bone and plant stems, which are 
composed of a stiff, solid outer shell with a softer, porous interi-
or. The same concept is exploited in sandwich structures, which 
are similarly characterized by a high bending stiffness-to-weight 
ratio and thereby a high buckling load. The high buckling load for 
structures obtained with the coating approach comes from the 
same principles. As demonstrated in this paper, the coating ap-
proach offers an effective and computationally cheap way of tak-
ing advantage of AM infill and thereby ensuring a high buckling 
load. The study is composed of both a numerical and an experi-
mental part.

2. Methods

The objective of this paper is to prove the superior buckling 
performance of an infill structure compared to that of a solid 
structure with the same mass. We compare the following two 
density-based topology optimization approaches: ① a standard 
projection-based minimum compliance approach, resulting in an 
almost perfectly black and white structure, and ② the so-called 
coating approach, resulting in a structure composed of a solid 
shell with porous infill [1]. To this end, a standard optimization 
benchmark case is studied: a simply supported beam with a cen-
tral load at the top edge, known as the MBB beam [7] (further 
details in Section 2.3). Compliance and buckling load are com-
pared for the optimized structures. The buckling analysis involves 
both a numerical and an experimental comparison. The study is 
restricted to 2D for clarity. However, 3D effects from experimen-
tal tests are taken into account, and the full study can be readily 
extended to 3D.

2.1. Optimization problem

The optimization problem is a standard minimum compliance 
problem with a constraint on the volume. The discretized prob-
lem is defined as follows:
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where, µ is the vector of design variables; c is the compliance; K is 
the global stiffness matrix (defined in the usual way for density- 
based topology optimization as a sum over element stiffness ma-
trices, each depending on the interpolated stiffness); U and F are 
the global displacement and force vectors, respectively; g is the 
volume constraint; V(µ) is the material volume; V* is the maxi-
mum allowed volume.

Design updates are performed based on analytically calculat-
ed gradients and a mathematical programming-based updating 
scheme, the method of moving asymptotes (MMA) [8]. Gradient 
expressions are omitted here for brevity (for details, see Ref. [2]).

2.2. Designing with the coating approach

Both the standard topology optimization approach and the 
coating approach permit the control of the macro-level structur-
al feature size through the application of filters. These include 
smoothing using a partial differential equation (PDE)-based den-
sity filter [9] and projection of intermediate design fields in order 
to push the smoothed problem toward discrete designs [10–12]. 
The degree of smoothing is determined by the filter radius R (as 
defined in Ref. [11]), while the projection is determined by the 
threshold, η, and sharpness, β.

In addition to this control of the macroscopic feature size, the 
coating approach possesses several levers for designing solid shell 
structures with porous infill. The skin thickness, tref, determines 
the solid shell at the structural surface. Infill is modeled using the 
homogenized properties, that is, the effective macroscopic prop-
erties of the periodic infill structure. This permits the inclusion of 
the fine microstructure into the numerical model in a computa-
tionally feasible way. Two homogenized parameters are sufficient 
to describe the homogenized infill: density and stiffness. These 
parameters are expressed as ratios of the solid material’s prop-
erties, noted as λm and λE, respectively. The relation between the 
two parameters must satisfy the Hashin-Shtrikman (HS) bounds 
in order to be physically meaningful [13]. We apply a triangular 
infill structure that is assumed to exactly reach the HS upper 
bound [14]. For the 2D case, the relation between the density and 
stiffness of the infill, shown in Fig. 1(c), is given by Ref. [15]:
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Note that this relation is based on the assumption that the 
solid material has a Poisson’s ratio of 1/3. However, for lower 
volume fractions where the infill structure behaves as a tension/
compression-dominated triangular honeycomb, the influence of 
the Poisson’s ratio of the solid material is negligible.

2.3. Test designs

The chosen test case is the so-called MBB beam benchmark 
problem: a simply supported beam of uniform thickness with a 
length-to-width ratio of 6 :1, loaded at the central point of the top 
edge. The numerically optimized structures are shown in Figs. 2(a)  
and (b). The domain size is 300 mm by 50 mm, with a thickness 

Fig. 1. Solid versus porous components. (a) Solid component; (b) porous compo-
nent with solid shell and triangular infill; (c) Hashin-Shtrikman upper bound of 
stiffness as a function of material density, defining infill properties.



252 A. Clausen et al. / Engineering 2 (2016) 250–257

deposition modeling (FDM) technique [17]. However, for simplici-
ty, the material will here be assumed to be isotropic linear elastic. 
This assumption is discussed in Section 4. The effective material 
parameters will be determined experimentally.

The fabricated porous specimen turned out to be slightly 
heavier than specified with the volume constraint, as the actu-
al printed infill was denser than the specified value of 43%. The 
skin thickness was validated by means of a digital caliper. The 
additional volume appeared to be due to an inaccuracy between 
the slicer software settings and the extruded filament width in 
the infill. Therefore, this volume difference was accounted for in 
the numerical model by attributing all of the additional mass to 
the infill. During optimization, a 20% infill stiffness was used. The 
corrected, actual density was 52% of solid, implying a stiffness of 
27%. This stiffness value was used in the finite element model for 
the comparison with experimental results. This slight increase 
does not have a major influence on the performance comparison.

2.5. Experimental setup

The experimental measurements consisted of two parts: ① the 
determination of effective material parameters, and ② the deter-
mination of buckling loads. The two parts were carried out using 
different test setups, both based on a three-point bending test, as 
shown in Figs. 3(a) and (c).

For determining material parameters, a steel bracket was 
placed at the loading point of the beam, as shown in Fig. 3(a). 
The load was applied by adding weights of 100 g to a basket at-
tached to the steel bracket by means of a string (the basket is not 

of 15 mm. The allowed volume fraction is 25% for both designs. 
The discretized model uses bilinear square elements with a side 
length of 0.5 mm. The skin thickness, tref, is chosen as 1 mm, 
while the smoothing of the design field is performed with a filter 
radius of R = 10 mm. A symmetry condition is utilized during op-
timization; however, for the buckling analysis, the full model is 
used in order to capture asymmetric modes. We choose a relative 
stiffness for the porous material of 20% of solid, that is, λE = 0.2, 
implying λm = 0.43. The remaining input parameters for filters and 
penalization follow the values used in Ref. [16].

2.4. Part fabrication

The test specimens, shown in Figs. 2(c) and (d), were additive-
ly manufactured by means of the fused filament fabrication (FFF) 
technique, using a MendelMax 2 from MakersToolWorks, USA, 
with an E3D v6 extruder hot end. The print material was styrene- 
ethylene-butylene-styrene (SEBS)†, a thermoplastic elastomer 
(TPE) with an elongation at break of 500%; that is, with sufficient 
flexibility to observe buckling modes without breaking the test 
specimen. Since SEBS is a viscoelastic material, the datasheet 
provided by the supplier states no Young’s modulus. Shore A and 
shore D hardness values are stated as 92 and 40, respectively. The 
filament was extruded with a layer height of 0.2 mm and an ex-
trusion width of approximately 0.5 mm. The unit cell size in the 
infill is determined from this extrusion width (which is equal to 
the cell wall thickness) and the macroscopic density, λm (see Sec-
tion 2.7). Being a filamentary technique, the FFF process produces 
parts with some anisotropy, as observed for the similar fused 

Fig. 2. Test specimens: designed (a, b) and fabricated (c, d) specimens. Left: solid specimen (standard minimum compliance). Right: porous specimen with triangle infill 
(coating approach).

Fig. 3. Experimental setup and effective material parameters. (a) Manual setup for determination of effective material parameters; (b) experimental curves obtained with 
the setup from (a), see Section 3.1; (c) setup for measuring buckling loads using an electromechanical testing machine.

† Super Premium 1.75 mm SEBS, provided by Boots Industries Inc.
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visible in the figure). The displacement of the loaded point was 
measured directly on the loading bracket by means of a dial indi-
cator with a precision of 0.01 mm. Since the beam in this test was 
loaded only within the linear domain, the zero point could be set 
arbitrarily.

The buckling load for each specimen was determined using an 
electromechanical testing machine (Instron 6022, retrofitted to 
5500R) with a 10 kN load cell, shown in Fig. 3(c). A displacement 
controlled loading was applied at a speed of 1.5 mm·min–1. Other 
displacement rates were applied for validation (see Section 4). 
Data were sampled at a rate of 20 measurements per second.

The reason for using a different setup for the two parts was 
that the 10 kN load cell was found to be accurate only for forces 
above 20 N (error below 2%). The forces used to determine the 
material parameters only went up to just over 5 N.

2.6. Numerical buckling analysis

The load at which buckling occurs is referred to as the criti-
cal load, Pc. A linear buckling problem is solved as an eigenvalue 
problem using finite element analysis (FEA) [18]:

                                ( )c ref 0=λK + K u Φσ   (3) 
The geometric stiffness matrix Kσ(uref) depends on the dis-

placements (stresses) obtained from the linear, static equilibrium 
problem solved for a reference load, Kuref = Fref. The critical load, 
Pc, equals the smallest root, λc, of the problem multiplied by the 
reference load. The associated buckling mode is given by Φ. Note 
that for a linear buckling problem, only the mode is given, not the 
amplitude (and thereby the actual displacements).

Initial experiments revealed that out-of-plane buckling modes 
would appear for the porous model. For this reason, the numer-
ical 2D model used for the optimization was complemented by 
a 3D Abaqus model for comparison with the printed samples, 
and 8-node trilinear brick elements were used (Abaqus C3D8 
elements). The discretization for the 2D model using a square 
element layout was reused in the 3D model (x and y directions). 
The model was extruded the sample thickness of 15 mm into the 
z direction, using the double element side length in order to keep 
the number of degrees of freedom low. The final discretization 
thus consisted of elements with the dimensions 0.5 mm × 0.5 mm 
× 1.0 mm. The infill was modeled as a solid material using the ho-
mogenized infill properties, rather than being represented as the 
actual printed triangular structure. This assumption is discussed 
in Section 4.

The load was distributed equally over an area corresponding to 
80 nodes. In addition to the supports defined for the 2D problem, 
the central loaded node was constrained from performing out-
of-plane motion (u3 = 0). This boundary condition corresponds to 
friction between the force actuator and the test specimen, imply-
ing that several out-of-plane buckling modes are prevented.

First, an eigenvalue analysis was performed, as defined in  
Eq. (3) (Abaqus: “Linear perturbation, Buckle”). This analysis was 
refined by tracing the geometrically nonlinear response of the 
structure using an arc-length method (Abaqus: “Static, Riks”). For 
each case, an asymmetric load perturbation was introduced as an 
imperfection with a magnitude of 1% of the buckling load predict-
ed by the eigenvalue analysis. The buckling load values reported 
here are the results of the nonlinear analysis, which for all cases 
was less than 2% below the linear analysis.

2.7. Infill buckling properties

Although our hypothesis was that the macroscopic buckling 
load would increase significantly with decreasing infill per-

centage, the infill itself is known to become more prone to local 
buckling failure as the density decreases. The “buckling strength” 
of triangular infill can be predicted for a general macroscopic in-
plane stress state [19].

Fig. 4(a) illustrates the triangle infill. Fig. 4(b) shows a zoom on 
a unit cell, indicating the triangle side length L and the cell wall 
thickness t. Note that the orientation follows what is used for 
the physical model. The buckling strength of a triangular infill is 
known to depend on the ratio (t/L)3 [19]. Given the regular trian-
gle shape and constant parameters, only two of the parameters L, t, 
and λm are independent. Ignoring the overlap of triangle corners, 
the third parameter depends linearly on the two other parame-
ters. The infill buckling strength therefore depends on λ3

m.
While the elastic properties of the infill are assumed to be 

linear isotropic, the buckling strength depends on the principal 
stress directions. For uniaxial loading directed along one of the 
triangle wall orientations, the buckling strength reduces to a sim-
plified expression [20]. Assuming a load parallel to the x-axis, the 
buckling strength is given by

                                      ( )302.543xS E t L=   (4)

The following discussion describes how the infill buckling 
strength for the design problem studied in this work can be esti-
mated for any allowed infill density λm  (0,1]. Note that several 
assumptions are specific for this design problem.

The fully solid structure may be approximated by a frame 
model, and given the triangle-based layout, even by a truss mod-
el. This is a natural outcome of the topology optimization process, 
which distributes material such that bending of any internal 
structure is minimized. This observation is supported by the 
distribution of the (absolute) maximum principal stress value, 
shown in Fig. 4(d), which is nearly constant over the individual 
beam cross-sections, except for minor irregularities due to the 
discretization.

Assuming that any value of the infill density would lead to 
an optimized structure with the same topology as the fully solid 
model, and assuming that this optimized structure may be mod-
eled using the same linear truss model, the normal force carried 
by a given structural member is unchanged (for a given external 
load). However, the cross-section changes from being fully solid 
to having a porous interior with a smaller homogenized stiffness. 
This means that the macroscopic axial stresses in the given bar 
are lower in the infill than in the corresponding fully solid bar by 
a factor depending on the skin thickness and infill density, while 
stresses in the solid shell are higher. By multiplying the in-plane 
stress state for a bar in the fully solid structure with this “infill 

Fig. 4. Estimation of infill stability. (a) Triangle infill structure with a single unit 
cell indicated; (b) unit cell geometric parameters; (c) “infill stress factor” relating 
macroscopic stresses in the infill with stresses in an equivalent fully solid struc-
ture; (d) distribution of (absolute) maximum principal stress. Green is compres-
sion and red/orange is tension.
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stress factor,” plotted in Fig. 4(c), the in-plane stress state for the 
corresponding bar in a porous structure of any infill density is 
therefore known.

The bar indicated by the arrow (or the corresponding bar, mir-
rored about the vertical symmetry line) in Fig. 4(d) has the high-
est absolute principal stress among the bars in compression. For 
this bar, the stress state is approximately uniaxial along the x-axis, 
which reduces the buckling strength to the simplified expression 
in Eq. (4). The ratio between this expression and the normal stress 
in the bar corresponding to a unit load thus provides the critical 
load for any infill density.

In addition, the solid shell might suffer from local buckling 
before macroscopic buckling occurs; however, the shell buckling 
strength has not been modeled in this study.

3. Results

This section presents the numerical results as well as the ex-
perimental validation. Reasons for deviations are discussed in 
Section 4. In accordance with the definition of the optimization 
problem, all force and displacement values concern the vertical 
components for the central loaded point, that is, the top center 
node.

3.1. Effective material parameters

The numerical model was calibrated by determining effective 
values for the Poisson’s ratio, ν0, and the Young’s modulus, E0. Fol-
lowing the assumption of a linear elastic material, both values are 
assumed to be constant. The calibration was based on the solid 
component. In accordance with the optimization, the effective 
stiffness for the porous phase is assumed to follow the HS upper 
bound (Eq. (2)).

The Poisson’s ratio for SEBS is known to be close to 0.5, like 
that of rubber [21]. To assess the sensitivity of the results with re-
spect to Poisson’s ratio, two runs of the Abaqus model were per-
formed; these runs were identical except for the use of ν0 = 0.45 
in one versus ν0 = 0.49 in the other. Displacement from a 1 N load 
differed by 0.1%, giving a measure of the uncertainty with respect 
to E0. The first critical load differed by 1%. These uncertainties are 
small compared to other sources. This result confirms the obser-
vation made earlier in this paper that topology optimized struc-
tures exhibit members that are mainly in pure tension/compres-

sion states and are hence largely independent of Poisson’s ratio. 
Therefore, it was simply assumed that ν0 = 0.49.

The effective Young’s modulus, E0, was determined by fitting 
the response of the numerical model to the experimentally ob-
served response. The experimental force-displacement curve, 
shown in Fig. 3(b), was found to be perfectly linear for the applied 
range of forces up to 5.3 N. A series of six measurements was per-
formed and the curve was fitted to the average value, with error 
bars indicating the minimum and maximum value observed. The 
slope was determined to be aexp = 5.92 N·mm–1 with a squared 
correlation coefficient of R2 = 0.9999. The numerical test beam 
was evaluated using a geometrically nonlinear model; howev-
er, the linearity observed in the experiments was also found in 
the numerical model. Therefore, the Young’s modulus was fitted 
based on a single force-displacement evaluation, using a 1 N load, 
by the relation (1 N)/uout = aexp, where uout is the output displace-
ment. The modulus was fitted to E0 = 65.7 MPa. Taking the visco-
elastic nature of the material into account, this number is within 
the expected range based on the shore hardness values provided 
by the manufacturer.

The force-displacement diagram in Fig. 3(b) also includes 
data for the porous structure. Again, an almost perfectly linear 
behavior was observed in the experiment (R2 = 0.9994). The stiff-
ness measured for the porous structure was 10% below the value 
measured for the solid structure. The numerical analysis of the 
porous structure predicted a stiffness that was 6% less than the 
measured value. This minor deviation is discussed in Section 4.  
Note that this data refers to the actual printed structure, with 
an infill stiffness of 27% of solid, instead of the 20% stiffness that 
would correspond to a mass that was equal to that of the solid 
structure. A numerical analysis using 20% stiffness indicates that 
the comparable stiffness would be 23% below that of the solid 
structure.

3.2. Buckling performance

For the buckling analysis, recall that the structures studied in 
this work were optimized using a 2D model and fabricated to in-
vestigate in-plane properties. Deviations between numerical and 
experimental results are discussed in Section 4.

The results of the buckling analysis are summarized in Fig. 5. 
In Fig. 5(a), the numerically determined nonlinear response is 
compared with the experimentally obtained buckling loads for 

Fig. 5. Buckling analysis. (a) Comparison of the geometrically nonlinear numerical response (curves with arc-length steps indicated) with experimentally observed buck-
ling loads (two lower horizontal dashed lines); (b)–(d) numerically determined mode shapes corresponding to curves in (a); (e) experimental response of the porous struc-
ture to a load of 100 N, indicated by the upper dashed line in (a); (f) and (g) experimental mode shapes corresponding to numerical shapes (c) and (d), with buckling load 
indicated by the two lower dashed lines in (a).
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the solid and porous structures.
For the solid structure, the numerical buckling load was de-

termined to be 23.2 N, whereas the experimental buckling load 
was determined to be 29.8 N. The corresponding mode shapes are 
very similar, as seen in Figs. 5(d) and (g), respectively. As expect-
ed, the mode shape is initiated by buckling in the bar found to be 
subjected to the highest normal stresses—the bar indicated by an 
arrow in Fig. 4(d).

For the porous structure, an out-of-plane twisting mode ap-
peared before the first in-plane mode, as shown in Fig. 5(f). The 
measured buckling load was 64.3 N. This twisting mode is also 
permissible in the 3D numerical model, with only a single loaded 
node restricted from out-of-plane translational motion. The mod-
el predicted a nearly identical out-of-plane mode shape at a load 
of 65.1 N, as shown in Figs. 5(a) and (c).

The relevant mode shape of the porous structure for this study 
is the first in-plane mode. In order to prevent the twisting mode 
from appearing, two U-shaped steel brackets with the legs sepa-
rated by 15.2 mm were mounted around the porous specimen, as 
shown in Fig. 5(e). The bracket legs were 19 mm wide and placed 
symmetrically about the component center plane at a distance of 
65 mm apart. A 10 kg weight was attached to the load-transfer-
ring steel bracket, with the total mass corresponding to a load of 
100 N. The displacements of the specimen did not appear to be 
noticeably constrained by the friction between the bracket and 
the specimen. As indicated in the figure, the porous structure 
still did not buckle at this load; however, local instability was 
initiated. Therefore, the in-plane mode shape was not obtained 
experimentally. Using the numerical model, the in-plane buckling 
load was determined to be 126 N with a mode shape quite simi-
lar to that of the solid structure despite the different topology, as 
shown in Fig. 5(b). The excellent agreement between the experi-
mental and numerical results for the out-of-plane twisting mode 
shape supports the correctness of the numerically determined in-
plane buckling load.

The relevant values to compare are the critical loads corre-
sponding to in-plane modes, as the out-of-plane mode is simply 
an artifact of extruding the 2D model into 3D without making 
any modifications to support the structural stability. The buckling 
load of the porous structure is 5.4 times higher than that of the 
solid model, using the numerically determined values. Values for 
the out-of-plane twisting mode of the porous structure have been 
included in the figure in order to support the validity of the nu-
merically determined in-plane buckling load.

3.3. Influence of infill density

Fig. 6 compares the numerical performance of the two previ-
ously presented structures to that of three other structures opti-
mized with identical parameters and volume constraint, but now 
using an infill stiffness of 40%, 60%, and 80%, respectively. These 
stiffness values correspond to volume densities of 67%, 82%, and 
92%, respectively, as shown in Fig. 6(a). The buckling load values 
for Fig. 6(b) are determined using a 2D linear buckling analysis, 
as described in Section 2.6. The 2D model gives slightly lower 
values for the buckling load; however, the ratio between solid 
and porous remains very close to the values obtained for the in-
plane modes of the 3D model (a ratio of 5.3 instead of 5.4). It is 
clear that, while the structural stiffness decreases close to linearly 
(that is, compliance increases) when using lower infill percent-
ages, the buckling load improves remarkably. This result is due 
to the fact that lighter infill implies wider structural members, 
and that bending stiffness increases with a power of three of the 
perpendicular distance from the center axis. The reason that the 
improvement in buckling load is so small for the higher infill 
percentages is that the HS bound curve has a steep slope, close to 
ρ = 1, meaning that only a little additional beam width is gained 
from the sacrificed stiffness. It should be noted that the different 
topology of the structure with λE = 0.2 compared to the other four 
structures is not the only reason for the high buckling load: A test 
run using a different starting guess resulted in a structure with 
the same topology as the solid structure. This structure’s critical 
load was 4.5 times higher than that of the solid structure, as op-
posed to 5.3 times higher.

Fig. 6(b) includes an estimate of the stability limit of the infill 
as a function of infill density, determined as described in Section 
2.7. Only structures with a macroscopic, relative buckling load be-
low this curve can be expected to retain local stability.

4. Discussion

The experimental results clearly validate our hypothesis that 
structures obtained by the coating approach exploiting AM infill 
have considerably higher buckling loads than structures obtained 
using the standard minimum compliance approach. There are, 
however, a few minor deviations.

The two major assumptions used for the numerical models 
were that SEBS is a linear elastic material and that the infill is ho-
mogeneous and isotropic, and satisfies the HS upper bound.

Fig. 6. Dependency for buckling load and compliance on infill density. (a) Sequence of structures, optimized with identical parameters except for infill density; (b) buckling 
load and compliance for the sequence of structures from (a). For reference, an estimated infill stability limit is included. Values are normalized by values for a fully solid 
structure (structure 5).
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The assumption that the printed SEBS is a linear elastic mate-
rial is a rough idealization, ignoring at least three effects: viscoe-
lasticity, which was observed during experiments; strain depend-
ency for Young’s modulus, which was difficult to distinguish from 
viscoelastic effects given the simple test setup; and anisotropy in 
the specimen due to the filamentary printing technique.

The viscoelasticity manifested itself in a dependency on defor-
mation rate for the stress-strain curve and a significant degree 
of creep. In the manual setup shown in Fig. 3(a) that was used 
to determine E0, the loads were applied practically instantane-
ously in order to minimize creep effects. The testing machine 
measurements of the buckling load, which are shown in Fig. 3(c), 
were subsequently validated with measurements performed at 
a higher strain rate (5 mm·min–1) and measurements performed 
using the manual setup. The former indicated a slightly higher 
buckling load and the latter a slightly lower load, but both meas-
urements were within 10% of the reported value. Based on these 
observations, the viscoelastic effects are assessed to be the major 
source of uncertainty in the experiments. Missing an account for 
these effects would tend to imply an overestimation of measured 
displacements, which implies an underestimation of the fitted 
Young’s modulus and thereby of the numerically determined 
buckling load. This might explain some of the deviation that was 
observed for the solid structure.

Strain dependency for Young’s modulus could influence the 
calculated values in both directions. As mentioned earlier, this ef-
fect was difficult to distinguish from viscoelastic effects given the 
simple test setup.

Anisotropy due to the filamentary printing technique has a 
negligible effect on the porous structure, as both the skin and the 
infill are printed with extrusion paths that are parallel to the local 
loading direction, with only two (for the skin) and one (for the in-
fill structure) filament paths. Therefore, anisotropy is mainly rel-
evant in the solid structure; however, the effect is less critical in a 
frame-like structure, as all bars are printed with the same extru-
sion pattern: The interface is printed in the longitudinal direction 
while the interior is printed with a transversal pattern. In a sense, 
the solid structure could be viewed as a porous structure with full 
density but slightly decreased stiffness in the interior due to the 
anisotropy. An estimation of this decreased stiffness is, however, 
beyond the scope of this paper, and the effect is to some extent 
taken care of by experimentally fitting the effective material pa-
rameters. Note that when extending to 3D designs, anisotropic 
effects in the direction normal to the layers will be stronger than 
within the plane of the layers. However, the degree of anisotropy 
depends on the chosen AM technology and may to some extent 
be alleviated through heat treatment [22].

In addition, the assumption that the infill is homogeneous and 
isotropic and satisfies the HS upper bound is rather rough. The ac-
tual printed, triangular infill is clearly not separated in scale from 
the macro structure, meaning that the infill should really have 
been considered as individual, structural members rather than as 
a homogenized material. However, Ref. [23], for example, reports 
that the use of homogenized properties may be a reasonable ap-
proximation even when using a few unit cells. Furthermore, the 
infill triangle geometry is badly realized along structural edges, 
causing an uneven distribution of material. This results in an in-
accuracy, particularly for thin members. The infill is an important 
source of anisotropy for the porous structure.

The two most important deviations between the numerical 
model and the experiments were that the numerical buckling 
load for the solid structure was about 20% smaller than the ex-
perimental value; and that the numerically predicted stiffness for 
the porous structure was 6% lower than the measured stiffness. 
Compared to the increase in buckling load of a factor of five, these 

deviations are small and in no way alter the conclusions of the 
study. It is clear that the gain in buckling load is inherent to the 
coating approach and is not limited to the MBB beam. The infill 
stability curve in Fig. 6(b) indicates that the 20% infill stiffness 
structure might be close to the optimal trade-off between local 
and global buckling strength. Note, however, that this statement 
builds on a number of assumptions—not only the assumptions 
stated in relation to the derivation of the infill stability curve, but 
also the assumptions that the infill is homogeneous and isotropic 
and satisfies the HS upper bound.

5. Conclusions

It has been shown that the coating approach to topology opti-
mization allows the exploitation of AM infill to create components 
that possess substantially improved buckling properties compared 
to those of structures that are optimized with the standard mini-
mum compliance approach. In the specific MBB beam test case, the 
buckling load for the porous structure was more than five times 
that of the solid structure, for a decrease in stiffness of about 20%–
25%. This gain in buckling load is due to the porous infill, which 
leads to wider structural members and thus components with an 
inherently larger bending stiffness-to-weight ratio.

The numerical results were backed by experimental measure-
ments performed on additively manufactured test specimens. 
The measurement results were associated with some uncertainty, 
mainly because of rough assumptions on the material properties 
of the test specimens. However, the trends of the results are very 
clear, and the deviations are small compared to the performance 
differences.

Going beyond the studied test case, a few remarks regarding 
relevance for future work should be stated. The porous com-
ponent attained such a high in-plane buckling load that the 
structure was failure-limited by local buckling (due to a load 
concentration) rather than global buckling. More generally, local 
buckling failure in the infill is likely to occur before global buck-
ling if the infill density is chosen to be too low. The out-of-plane 
buckling of the porous structure showed the need for designing 
experiments based on a full 3D structure.

This study demonstrates how topology optimization may be 
adapted to AM-specific manufacturing opportunities and provide 
remarkable improvements in structural performance.
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