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The rise of big data has led to new demands for machine learning (ML) systems to learn complex mod-
els, with millions to billions of parameters, that promise adequate capacity to digest massive datasets 
and offer powerful predictive analytics (such as high-dimensional latent features, intermediate repre-
sentations, and decision functions) thereupon. In order to run ML algorithms at such scales, on a distrib-
uted cluster with tens to thousands of machines, it is often the case that significant engineering efforts 
are required—and one might fairly ask whether such engineering truly falls within the domain of ML 
research. Taking the view that “big” ML systems can benefit greatly from ML-rooted statistical and algo-
rithmic insights—and that ML researchers should therefore not shy away from such systems design—we 
discuss a series of principles and strategies distilled from our recent efforts on industrial-scale ML solu-
tions. These principles and strategies span a continuum from application, to engineering, and to theo-
retical research and development of big ML systems and architectures, with the goal of understanding 
how to make them efficient, generally applicable, and supported with convergence and scaling guaran-
tees. They concern four key questions that traditionally receive little attention in ML research: How can 
an ML program be distributed over a cluster? How can ML computation be bridged with inter-machine 
communication? How can such communication be performed? What should be communicated between 
machines? By exposing underlying statistical and algorithmic characteristics unique to ML programs 
but not typically seen in traditional computer programs, and by dissecting successful cases to reveal 
how we have harnessed these principles to design and develop both high-performance distributed ML 
software as well as general-purpose ML frameworks, we present opportunities for ML researchers and 
practitioners to further shape and enlarge the area that lies between ML and systems. . 
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1. Introduction

Machine learning (ML) has become a primary mechanism for dis-
tilling structured information and knowledge from raw data, turning 
them into automatic predictions and actionable hypotheses for di-
verse applications, such as: analyzing social networks [1]; reasoning 
about customer behaviors [2]; interpreting texts, images, and vide-
os [3]; identifying disease and treatment paths [4]; driving vehicles 
without the need for a human [5]; and tracking anomalous activity 
for cybersecurity [6], among others. The majority of ML applications 
are supported by a moderate number of families of well-developed 

ML approaches, each of which embodies a continuum of technical 
elements from model design, to algorithmic innovation, and even 
to perfection of the software implementation, and which attracts 
ever-growing novel contributions from the research and develop-
ment community. Modern examples of such approaches include 
graphical models [7–9], regularized Bayesian models [10–12], 
nonparametric Bayesian models [13,14], sparse structured mod-
els [15,16], large-margin methods [17,18], deep learning [19,20], 
matrix factorization [21,22], sparse coding [23,24], and latent space 
modeling [1,25]. A common ML practice that ensures mathemati-
cal soundness and outcome reproducibility is for practitioners and 
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researchers to write an ML program (using any generic high-level 
programming language) for an application-specific instance of a 
particular ML approach (e.g., semantic interpretation of images via a 
deep learning model such as a convolution neural network). Ideally, 
this program is expected to execute quickly and accurately on a vari-
ety of hardware and cloud infrastructure: laptops, server machines, 
graphics processing units (GPUs), cloud computing and virtual 
machines, distributed network storage, Ethernet and Infiniband net-
working, to name just a few. Thus, the program is hardware-agnos-
tic but ML-explicit (i.e., following the same mathematical principle 
when trained on data and attaining the same result regardless of 
hardware choices).

With the advancements in sensory, digital storage, and Internet 
communication technologies, conventional ML research and devel-
opment—which excel in model, algorithm, and theory innovations—
are now challenged by the growing prevalence of big data collec-
tions, such as hundreds of hours of video uploaded to video-sharing 
sites every minute†, or petabytes of social media on billion-plus-user 
social networks‡. The rise of big data is also being accompanied by 
an increasing appetite for higher-dimensional and more complex 
ML models with billions to trillions of parameters, in order to sup-
port the ever-increasing complexity of data, or to obtain still higher 
predictive accuracy (e.g., for better customer service and medical di-
agnosis) and support more intelligent tasks (e.g., driverless vehicles 
and semantic interpretation of video data) [26,27]. Training such big 
ML models over such big data is beyond the storage and computa-
tion capabilities of a single machine. This gap has inspired a growing 
body of recent work on distributed ML, where ML programs are 
executed across research clusters, data centers, and cloud provid-
ers with tens to thousands of machines. Given P machines instead 
of one machine, one would expect a nearly P-fold speedup in the 
time taken by a distributed ML program to complete, in the sense 
of attaining a mathematically equivalent or comparable solution to 
that produced by a single machine; yet, the reported speedup often 
falls far below this mark. For example, even recent state-of-the-art 
implementations of topic models [28] (a popular method for text 
analysis) cannot achieve 2× speedup with 4× machines, because of 
mathematical incorrectness in the implementation (as shown in Ref. 
[25]), while deep learning on MapReduce-like systems such as Spark 
has yet to achieve 5× speedup with 10× machines [29]. Solving this 
scalability challenge is therefore a major goal of distributed ML re-
search, in order to reduce the capital and operational cost of running 
big ML applications.

Given the iterative-convergent nature of most—if not all—major 
ML algorithms powering contemporary large-scale applications, at 
a first glance one might naturally identify two possible avenues to-
ward scalability: faster convergence as measured by iteration num-
ber (also known as convergence rate in the ML community), and 
faster per-iteration time as measured by the actual speed at which 
the system executes an iteration (also known as throughput in the 
system community). Indeed, a major current focus by many distrib-
uted ML researchers is on algorithmic correctness as well as faster 
convergence rates over a wide spectrum of ML approaches [30,31] 
However, it is difficult for many of the “accelerated” algorithms 
from this line of research to reach industry-grade implementations 
because of their idealized assumptions on the system—for example, 
the assumption that networks are infinitely fast (i.e., zero synchro-
nization cost), or the assumption that all machines make the algo-
rithm progress at the same rate (implying no background tasks and 
only a single user of the cluster, which are unrealistic expectations 

for real-world research and production clusters shared by many us-
ers). On the other hand, systems researchers focus on high iteration 
throughput (more iterations per second) and fault-recovery guar-
antees, but may choose to assume that the ML algorithm will work 
correctly under non-ideal execution models (such as fully asyn-
chronous execution), or that it can be rewritten easily under a given 
abstraction (such as MapReduce or Vertex Programming) [32–34]. 
In both ML and systems research, issues from the other side can be-
come oversimplified, which may in turn obscure new opportunities 
to reduce the capital cost of distributed ML. In this paper, we pro-
pose a strategy that combines ML-centric and system-centric think-
ing, and in which the nuances of both ML algorithms (mathematical 
properties) and systems hardware (physical properties) are brought 
together to allow insights and designs from both ends to work in 
concert and amplify each other.

Many of the existing general-purpose big data software plat-
forms present a unique tradeoff among correctness, speed of execu-
tion, and ease-of-programmability for ML applications. For example, 
dataflow systems such as Hadoop and Spark [34] are built on a  
MapReduce-like abstraction [32] and provide an easy-to-use pro-
gramming interface, but have paid less attention to ML properties 
such as error tolerance, fine-grained scheduling of computation, 
and communication to speed up ML programs. As a result, they of-
fer correct ML program execution and easy programming, but are 
slower than ML-specialized platforms [35,36]. This (relative) lack 
of speed can be partly attributed to the bulk synchronous parallel 
(BSP) synchronization model used in Hadoop and Spark, in which 
machines assigned to a group of tasks must wait at a barrier for the 
slowest machine to finish, before proceeding with the next group 
of tasks (e.g., all Mappers must finish before the Reducers can 
start) [37]. Other examples include graph-centric platforms such as 
GraphLab and Pregel, which rely on a graph-based “vertex program-
ming” abstraction that opens up new opportunities for ML program 
partitioning, computation scheduling, and flexible consistency con-
trol; hence, they are usually correct and fast for ML. However, ML 
programs are not usually conceived as vertex programs (instead, 
they are mathematically formulated as iterative-convergent fixed-
point equations), and it requires non-trivial effort to rewrite them 
as such. In a few cases, the graph abstraction may lead to incorrect 
execution or suboptimal execution speed [38,39]. Of recent note 
is the parameter server paradigm [28,36,37,40,41], which pro-
vides a “design template” or philosophy for writing distributed ML 
programs from the ground up, but which is not a programmable 
platform or work-partitioning system in the same sense as Hadoop, 
Spark, GraphLab, and Pregel. Taking into account the common ML 
practice of writing ML programs for application-specific instances, 
a usable software platform for ML practitioners could instead offer 
two utilities: ① a ready-to-run set of ML workhorse implemen-
tations—such as stochastic proximal descent algorithms [42,43], 
coordinate descent algorithms [44], or Markov Chain Monte Carlo 
(MCMC) algorithms [45]—that can be re-used across different ML al-
gorithm families; and ② an ML distributed cluster operating system 
supporting these workhorse implementations, which partitions and 
executes these workhorses across a wide variety of hardware. Such 
a software platform not only realizes the capital cost reductions 
obtained through distributed ML research, but even complements 
them by reducing the human cost (scientist- and engineer-hours) of 
big ML applications, through easier-to-use programming libraries 
and cluster management interfaces.

With the growing need to enable data-driven knowledge distil-

† https://www.youtube.com/yt/press/statistics.html
‡ https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
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lation, decision making, and perpetual learning—which are repre-
sentative hallmarks of the vision for machine intelligence—in the 
coming years, the major form of computing workloads on big data 
is likely to undergo a rapid shift from database-style operations for 
deterministic storage, indexing, and queries, to ML-style operations 
such as probabilistic inference, constrained optimization, and ge-
ometric transformation. To best fulfill these computing tasks, which 
must perform a large number of passes over the data and solve a 
high-dimensional mathematical program, there is a need to revisit 
the principles and strategies in traditional system architectures, 
and explore new designs that optimally balance correctness, speed, 
programmability, and deployability. A key insight necessary for 
guiding such explorations is an understanding that ML programs 
are optimization-centric, and frequently admit iterative-convergent 
algorithmic solutions rather than one-step or closed form solutions. 
Furthermore, ML programs are characterized by three properties:  
① error tolerance, which makes ML programs robust against limited 
errors in intermediate calculations; ② dynamic structural depend-
encies, where the changing correlations between model parameters 
must be accounted for in order to achieve efficient, near-linear par-
allel speedup; and ③ non-uniform convergence, where each of the 
billions (or trillions) of ML parameters can converge at vastly differ-
ent iteration numbers (typically, some parameters will converge in 
2–3 iterations, while others take hundreds). These properties can be 
contrasted with traditional programs (such as sorting and database 
queries), which are transaction-centric and are only guaranteed to 
execute correctly if every step is performed with atomic correct-
ness [32,34]. In this paper, we will derive unique design principles 
for distributed ML systems based on these properties; these design 
principles strike a more effective balance between ML correctness, 
speed, and programmability (while remaining generally applicable 
to almost all ML programs), and are organized into four upcoming 
sections: ① How to distribute ML programs; ② how to bridge ML 
computation and communication; ③ how to communicate; and  
④ what to communicate. Before delving into the principles, let us 
first review some necessary background information about itera-
tive-convergent ML algorithms.

2. Background: Iterative-convergent machine learning (ML) 
algorithms

With a few exceptions, almost all ML programs can be viewed 
as optimization-centric programs that adhere to a general  
mathematical form:

                        ( )max , 
A

AL x  or ( )min , 
A

AL x , 

                       where ( ) { }( ) ( )1
, , ;N

i i i
A f x y A r A

=
= +L x   

(1)

In essence, an ML program tries to fit N data samples (which may 
be labeled or unlabeled, depending on the real-world application 
being considered), represented by { } 1

, N
i i i

x y
=

≡x  (where yi is present 
only for labeled data samples), to a model represented by A. This 
fitting is performed by optimizing (maximizing or minimizing) an 
overall objective function L, composed of two parts: a loss function, f, 
that describes how data should fit the model, and a structure-induc-
ing function, r, that incorporates domain-specific knowledge about 
the intended application, by placing constraints or penalties on the 
values that θ can take.

The apparent simplicity of Eq. (1) belies the potentially complex 
structure of the functions f and r, and the potentially massive size 

of the data x and model A. Furthermore, ML algorithm families are 
often identified by their unique characteristics on f, r, x, and A. For 
example, a typical deep learning model for image classification, 
such as Ref. [20], will contain tens of millions through billions of 
matrix-shaped model parameters in A, while the loss function f ex-
hibits a deep recursive structure ( ) ( )( )( )1 2 3f f f f= + +    that 
learns a hierarchical representation of images similar to the human 
visual cortex. Structured sparse regression models [4] for identifying 
genetic disease markers may use overlapping structure-inducing 
functions ( ) ( ) ( ) ( )1 a 2 b 3 cr r A r A r A= + + +, where Aa, Ab, and Ac are 
overlapping subsets of A, in order to respect the intricate process of 
chromosomal recombination. Graphical models, particularly topic 
models, are routinely deployed on billions of documents x—that is, 
N  ≥ 109, a volume that is easily generated by social media such as 
Facebook and Twitter—and can involve up to trillions of parameters 
θ in order to capture rich semantic concepts over so much data [26].

Apart from specifying Eq. (1), one must also find the model 
parameters A that optimize L. This is accomplished by selecting 
one out of a small set of algorithmic techniques, such as stochastic 
gradient descent [42], coordinate descent [44], MCMC† [45], and 
variational inference (to name just a few). The chosen algorithmic 
technique is applied to Eq. (1) to generate a set of iterative-conver-
gent equations, which are implemented as program code by ML 
practitioners, and repeated until a convergence or stopping criterion 
is reached (or, just as often, until a fixed computational budget is ex-
ceeded). Iterative-convergent equations have the following general 
form: 

                        ( ) ( ) ( )( )( )1 , 1 ,t F t t= − ∆ −A A AL x  (2)

where, the parentheses (t) denotes iteration number. This general 
form produces the next iteration’s model parameters A(t), from the 
previous iteration’s A(t − 1) and the data x, using two functions:  
① an update function ΔL (which increases the objective L) that per-
forms computation on data x and previous model state A(t − 1), and 
outputs intermediate results; and ② an aggregation function F that 
then combines these intermediate results to form A(t). For simplicity 
of notation, we will henceforth omit L from the subscript of Δ—with 
the implicit understanding that all ML programs considered in this 
paper bear an explicit loss function L (as opposed to heuristics or 
procedures lacking such a loss function).

Let us now look at two concrete examples of Eqs. (1) and (2), 
which will prove useful for understanding the unique properties of 
ML programs. In particular, we will pay special attention to the four 
key components of any ML program: ① data x and model A; ② loss 
function f (x, A); ③ structure-inducing function r (A); and ④ algo-
rithmic techniques that can be used for the program.

Lasso regression. Lasso regression [46] is perhaps the simplest 
exemplar from the structured sparse regression ML algorithm fam-
ily, and is used to predict a response variable yi given vector-valued 
features xi (i.e., regression, which uses labeled data)—but under the 
assumption that only a few dimensions or features in xi are inform-
ative about yi. As input, Lasso is given N training pairs x of the form 
( ), m

i iy ∈ ×x  , i = 1,…, n, where the features are m-dimensional vec-
tors. The goal is to find a linear function, parametrized by the weight 
vector A, such that ① 

T
i iy≈A x , and ② the m-dimensional parame-

ters A are sparse‡ (most elements are zero): 

 ( )Lassomin , 
A

AL x , where ( ) ( )
{ }( ) ( )

1

2T
Lasso

1 1

, ;

1, 
2

N
i i i

n m

i i n j
i j

rf y

y aλ

=

= =

= − +∑ ∑
Ax A

A A xL x  (3)

† Strictly speaking, MCMC algorithms do not perform the optimization in Eq. (1) directly—rather, they generate samples from the function L, and additional procedures 
are applied to these samples to find a optimizer A*.

‡ Sparsity has two benefits: It automatically controls the complexity of the model (i.e., if the data requires fewer parameters, then the ML algorithm will adjust as 
required), and improves human interpretation by focusing the ML practitioner’s attention on just a few parameters.
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or more succinctly in matrix notation: 
 
                               

2

2 1

1min
2 nλ− +

A
XA y A   (4)

where, [ ]T
1, , m n

n
×= ∈X x x ; ( )T

1, , n
ny y= ∈y  ; 2 is the Euclide-

an norm on Rn; 1 is the l1 norm on Rm; and λn is some constant that 
balances model fit (the f term) and sparsity (the g term). Many algo-
rithmic techniques can be applied to this problem, such as stochas-
tic proximal gradient descent or coordinate descent. We will present 
the coordinate descent† iterative-convergent equation: 

                      ( ) ( )T T 1 ,j j j k k n
k j

t t λ⋅ ⋅ ⋅
≠

= − −∑A X y X X A   (5)
    

where, ( ) ( )( ), : signj j jλ λ
+

= −A A A  is the “soft-thresholding opera-
tor,” and we assume the data is normalized so that for all j, T 1j j⋅ ⋅ =X X .  
Tying this back to the general iterative-convergent update form, we 
have the following explicit forms for Δ and F: 
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where, ( )( )Lasso 1 ,j j
t = ∆ − u A x  is the j-th element of ( )( )Lasso 1 ,t∆ −A x .

Latent Dirichlet allocation topic model. Latent Dirichlet alloca-
tion (LDA) [47] is a member of the graphical models ML algorithm 
family, and is also known as a “topic model” for its ability to identify 
commonly-recurring topics within a large corpus of text documents. 
As input, LDA is given N unlabeled documents { } 1

N
i i=

= xx , where 
each document xi contains Ni words (referred to as “tokens” in the 
LDA literature) represented by 1, , , ,

ii i ij iNx x x=x   . Each token 
{ }1, ,ijx V∈   is an integer representing one word out of a vocabulary 

of V words—for example, the phrase “machine learning algorithm” 
might be represented as 1 2 3, , 25,60,13i i i ix x x= =x  (the correspond-
ence between words and integers is arbitrary, and has no bearing on 
the accuracy of the LDA algorithm).

The goal is to find a set of parameters {{ } { } { } }1 11
, ,

N N K
ij i ki ki

z
= ==

=A δ B
—“token topic indicators” { }1, ,ijz K∈   for each token in each docu-
ment, “document-topic vectors” ( )Simplexi K∈δ  for each document, 
and K “word-topic vectors” (or simply, “topics”) ( )Simplexk V∈B —
that maximizes the following log-likelihood‡ equation: 

( )LDAmax ,
A

AL x ,  

where ( ) ( ) ( )( )
{ }( )

( ) ( )
( )

1
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1 1

1 1

;
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f
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α β

=
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= =
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+
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∑ ∑
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δ B
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  (7)

where, ( )cate. ∏ uu v v l

l l
 is the categorical (a.k.a., discrete) proba-

bility distribution; ( ) 1
Dirichlet

α−∏v v
l l

 is the Dirichlet probability 
distribution; and α and β are constants that balance model fit (the 
f term) with the practitioner’s prior domain knowledge about the 
document-topic vectors δi and the topics Bk (the r term). Similar to 
Lasso, many algorithmic techniques such as Gibbs sampling and var-
iational inference (to name just two) can be used on the LDA model; 
we will consider the collapsed Gibbs sampling equations††: 

( ) ( )
( )
( )
( )

old

new

old

new

,

,

,

,

, ,  1 1,
1 1,
1 1,
1 1,

ij

ij

k w

k w

i k

i k

i j t
t
t
t

∀ − − =

− + =

− − =
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B
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(8)

( )
( ) ( ) ( )( )

old

new

where  1

, 1 , 1
ij

ij ij ij i

k z t

k z t ~ z x t t

= −

= − −δ B
 

where, += and −= are the self-increment and self-decrement op-
erators (i.e., δ, B, and z are being modified in-place); ~ P( ) means 
“to sample from distribution P ,” and ( ) ( )( ), 1 , 1ij ij iz x t t− −δ B  
is the conditional probability‡‡ of zij given the current values of 
( )1i t −δ  and ( )1t −B . The update ( )( )LDA 1 ,t∆ −A x  proceeds in two 

stages: ① execute Eq. (8) over all document tokens xij; and ② out-
put ( ) ( ){{ } ( ){ } ( ){ } }1 11

1 , 1 , 1N N K
ij i ki ki

t z t t t
= ==

= − − −A δ B .  The aggregation 
FLDA(A(t － 1), …) turns out to simply be the identity function.

2.1. Unique properties of ML programs

To speed up the execution of large-scale ML programs over a 
distributed cluster, we wish to understand their properties, with an 
eye toward how they can inform the design of distributed ML sys-
tems. It is helpful to first understand what an ML program is “not”: 
Let us consider a traditional, non-ML program, such as sorting on 
MapReduce. This algorithm begins by distributing the elements 
to be sorted, x1,…, xN , randomly across a pool of M mappers. The 
Mappers hash each element xi into a key-value pair (h(xi), xi), where 
h is an “order-preserving” hash function that satisfies h(x) > h(y) if 
x > y. Next, for every unique key a, the MapReduce system sends all 
key-value pairs (a, x) to a Reducer labeled “a.” Each Reducer then 
runs a sequential sorting algorithm on its received values x and, 
finally, the Reducers take turns (in ascending key order) to output 
their sorted values.

The first thing to note about MapReduce sort, is that it is single- 
pass and non-iterative—only a single Map and a single Reduce step 
are required. This stands in contrast to ML programs, which are iter-
ative-convergent and repeat Eq. (2) many times. More importantly, 
MapReduce sort is operation-centric and deterministic, and does not 
tolerate errors in individual operations. For example, if some Map-
pers were to output a mis-hashed pair (a, x) where a ≠ h(x) (for the 
sake of argument, let us say this is due to improper recovery from 
a power failure), then the final output will be mis-sorted because x 
will be output in the wrong position. It is for this reason that Hadoop 
and Spark (which are systems that support MapReduce) provide 
strong operational correctness guarantees via robust fault-tolerant 
systems. These fault-tolerant systems certainly require additional 
engineering effort, and impose additional running time overheads in 
the form of hard-disk-based checkpoints and lineage trees [34,49]—
yet they are necessary for operation-centric programs, which may 
fail to execute correctly in their absence.

This leads us to the first property of ML programs: error toler-
ance. Unlike the MapReduce sort example, ML programs are usually 
robust against minor errors in intermediate calculations. In Eq. (2), 
even if a limited number of updates ΔL are incorrectly computed or 
transmitted, the ML program is still mathematically guaranteed to 
converge to an optimal set of model parameters A*—that is, the ML 
algorithm terminates with a correct output (even though it might 
take more iterations to do so) [37,40]. An good example is stochastic 

† More specifically, we are presenting the form known as “block coordinate descent,” which is one of many possible forms of coordinate descent.
‡ A log-likelihood is the natural logarithm of a probability distribution. As a member of the graphical models ML algorithm family, LDA specifies a probability 

distribution, and hence has an associated log-likelihood.
†† Note that collapsed Gibbs sampling re-represents δi and Bk as integer-valued vectors instead of simplex vectors. Details can be found in Ref. [48].
‡‡ There are a number of efficient ways to compute this probability. In the interest of keeping this article focused, we refer the reader to Ref. [48] for an appropriate 

introduction.
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gradient descent (SGD), a frequently used algorithmic workhorse 
for many ML programs, ranging from deep learning to matrix fac-
torization and logistic regression [50–52]. When executing an ML 
program that uses SGD, even if a small random vector ε is added to 
the model after every iteration, that is, A(t) = A(t) + ε, convergence is 
still assured; intuitively, this is because SGD always computes the 
correct direction of the optimum A* for the update ΔL, so moving 
A(t) around simply results in the direction being re-computed to 
suit [37,40]. This property has important implications for distrib-
uted system design, as the system no longer needs to guarantee 
perfect execution, inter-machine communication, or recovery from 
failure (which requires substantial engineering and running time 
overheads). It is often cheaper to do these approximately, especially 
when resources are constrained or limited (e.g., limited inter-ma-
chine network bandwidth) [37,40].

In spite of error tolerance, ML programs can in fact be more 
difficult to execute than operation-centric programs, because of de-
pendency structure that is not immediately obvious from a cursory 
look at the objective L or update functions ΔL and F. It is certainly 
the case that dependency structures occur in operation-centric 
programs: In MapReduce sort, the Reducers must wait for the Map-
pers to finish, or else the sort will be incorrect. In order to see what 
makes ML dependency structures unique, let us consider the Lasso 
regression example in Eq. (3). At first glance, the ΔLasso update Eq. (6) 
may look like they can be executed in parallel, but this is only par-
tially true. A more careful inspection reveals that, for the j-th model 
parameter Aj, its update depends on k ≠ j X

T
·j X·k Ak (t – 1). In other 

words, potentially every other parameter Ak is a possible depend-
ency, and therefore the order in which the model parameters A are 
updated has an impact on the ML program’s progress or even cor-
rectness [39]. Even more, there is an additional nuance not present 
in operation-centric programs: The Lasso parameter dependencies 
are not binary (i.e., are not only “on” or “off”), but can be soft-valued 
and influenced by both the ML program state and input data. Notice 
that if X T

·j X·k = 0 (meaning that data column j is uncorrelated with 
column k), then Aj and Ak have zero dependency on each other, and 
can be updated safely in parallel [39]. Similarly, even if X T

·j X·k > 0, 
as long as Ak = 0, then Aj does not depend on Ak. Such dependency 
structures are not limited to one ML program; careful inspection of 
the LDA topic model update Eq. (8) reveals that the Gibbs sampler 
update for xij (word token j in document i) depends on ① all other 
word tokens in document i, and ② all other word tokens b in other 
documents a that represent the exact same word, that is, xij = xab [25]. 
If these ML program dependency structures are not respected, the 
result is either sub-ideal scaling with additional machines (e.g., < 2× 
speedup with 4× as many machines) [25] or even outright program 
failure that overwhelms the intrinsic error tolerance of ML pro-
grams [39].

A third property of ML programs is non-uniform convergence, 
the observation that not all model parameters Aj will converge to 
their optimal values Aj* in the same number of iterations—a prop-
erty that is absent from single-pass algorithms such as MapReduce 
sort. In the Lasso example in Eq. (3), the r(A) term encourages 
model parameters Aj to be exactly zero, and it has been empirical-
ly observed that once a parameter reaches zero during algorithm 
execution, it is unlikely to revert to a non-zero value [39]. To put it 
another way, parameters that reach zero are already converged (with 
high, though not 100%, probability). This suggests that computation 
may be better prioritized toward parameters that are still non-zero, 
by executing ΔLasso more frequently on them—and such a strategy 
indeed reduces the time taken by the ML program to finish [39]. 

Similar non-uniform convergence has been observed and exploited 
in PageRank, another iterative-convergent algorithm [53].

Finally, it is worth noting that a subset of ML programs exhibit 
compact updates, in that the updates ΔLasso are, upon careful inspec-
tion, significantly smaller than the size of the matrix parameters, 
|A|. In both Lasso (Eq. (3)) and LDA topic models [47], the updates 
ΔLasso generally touch just a small number of model parameters, due 
to sparse structure in the data. Another salient example is that of 
“matrix-parametrized” models, where A is a matrix (such as in deep 
learning [54]), yet individual updates ΔLasso can be decomposed into 
a few small vectors (a so-called “low-rank” update). Such compact-
ness can dramatically reduce storage, computation, and communi-
cation costs if the distributed ML system is designed with it in mind, 
resulting in order-of-magnitude speedups [55,56]. 

2.2. On data and model parallelism

For ML applications involving terabytes of data, using complex 
ML programs with up to trillions of model parameters, execution 
on a single desktop or laptop often takes days or weeks [20]. This 
computational bottleneck has spurred the development of many 
distributed systems for parallel execution of ML programs over a 
cluster [33–36]. ML programs are parallelized by subdividing the 
updates ΔL over either the data x or the model A—referred to respec-
tively as data parallelism and model parallelism.

It is crucial to note that the two types of parallelism are comple-
mentary and asymmetric—complementary, in that simultaneous 
data and model parallelism is possible (and even necessary, in some 
cases), and asymmetric, in that data parallelism can be applied ge-
nerically to any ML program with an independent and identically 
distributed (i.i.d.) assumption over the data samples x1,…, xN. Such 
i.i.d. ML programs (from deep learning, to logistic regression, to top-
ic modeling and many others) make up the bulk of practical ML us-
age, and are easily recognized by a summation over data indices i in 
the objective L (e.g., Lasso Eq. (3)). Consequently, when a workhorse 
algorithmic technique (e.g., SGD) is applied to L, the derived update 
equations ΔL will also have a summation† over i, which can be easily 
parallelized over multiple machines, particularly when the number 
of data samples N is in the millions or billions. In contrast, model 
parallelism requires special care, because model parameters Aj do 
not always enjoy this convenient i.i.d. assumption (Fig. 1)—therefore, 
which parameters Aj are updated in parallel, as well as the order in 
which the updates ΔL happen, can lead to a variety of outcomes: 
from near-ideal P-fold speedup with P machines, to no additional 
speedups with additional machines, or even to complete program 

Fig. 1. The difference between data and model parallelism: Data samples are always 
conditionally independent given the model, but there are some model parameters 
that are not independent of each other.

† For Lasso coordinate descent ΔLasso (Eq. (5)), the summation over i is in the inner product T
1

N
j k ij iki⋅ ⋅ =

= ∑X X X X  
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failure. The dependency structures discussed for Lasso (Section 2.1) 
are a good example of the non-i.i.d. nature of model parameters. Let 
us now discuss the general mathematical forms of data and model 
parallelism, respectively.

Data parallelism. In data parallel ML execution, the data 
x = {x1,…,xN} is partitioned and assigned to parallel computational 
workers or machines (indexed by p = 1,…, P); we will denote the 
p-th data partition by xp. If the update function ΔL has an outer-
most summation over data samples i (as seen in ML programs with 
the commonplace i.i.d. assumption on data), we can split ΔL over 
data subsets and obtain a data parallel update equation, in which  
ΔL(A(t – 1), xp) is executed on the p-th parallel worker: 

                     ( ) ( ) ( )( )( )1
1 , 1 ,P

pp
t F t t

=
= − ∆ −∑A A A xL   (9)

It is worth noting that the summation 1

P

p=∑
 
is the basis for a host 

of established techniques for speeding up data parallel execution, 
such as minibatches and bounded-asynchronous execution [37,40]. 
As a concrete example, we can write the Lasso block coordinate de-
scent Eq. (6) in a data parallel form, by applying a bit of algebra: 
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where, 
pi∈∑ x  means (with a bit of notation abuse) to sum over all 

data indices i included in xp.
Model parallelism. In model parallel ML execution, the model 

A is partitioned and assigned to workers/machines p = 1,…, P, and 
updated therein by running parallel update functions ΔL. Unlike 
data parallelism, each update function ΔL also takes a scheduling 
or selection function Sp,( t − 1), which restricts ΔL to operate on a 
subset of the model parameters A (one basic use is to prevent dif-
ferent workers from trying to update the same parameters): 

         ( ) ( ) ( ) ( ) ( )( )( ){ }, 1
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where, we have omitted the data x since it is not being partitioned 
over. Sp,( t − 1) outputs a set of indices { j1, j2,…}, so that ΔL only performs 
updates on Aj1, Aj2,...; we refer to such selection of model parameters 
as scheduling. The model parameters Aj are not, in general, independ-
ent of each other, and it has been established that model parallel al-
gorithms are effective only when each iteration of parallel updates is 
restricted to a subset of mutually independent (or weakly correlated) 
parameters [39,57–59], which can be performed by Sp,(t − 1).

The Lasso block coordinate descent updates (Eq. (6)) can be eas-
ily written in a simple model parallel form. Here, Sp,(t − 1) chooses the 
same fixed set of parameters for worker p on every iteration, which 
we refer to by jp1,..., jpmp:
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On a closing note, simultaneous data and model parallelism is 
also possible, by partitioning the space of data samples and model 
parameters (xi, Aj) into disjoint blocks. The LDA topic model Gibbs 
sampling equations (Eq. (8)) can be partitioned in such a block-wise 
manner (Fig. 2), in order to achieve near-perfect speedup with P 
machines [25].

3. Principles of ML system design

The unique properties of ML programs, when coupled with the 
complementary strategies of data and model parallelism, interact 
to produce a complex space of design considerations that goes 
beyond the ideal mathematical view suggested by the general  
iterative-convergent update equation, Eq. (2). In this ideal view, one 
hopes that the Δ and F functions simply need to be implemented 
equation-by-equation (e.g., following the Lasso regression data 
and model parallel equations given earlier), and then executed by 
a general-purpose distributed system—for example, if we chose a  
MapReduce abstraction, one could write Δ as Map and F as Reduce, 
and then use a system such as Hadoop or Spark to execute them. 
The reality, however, is that the highest-performing ML implemen-
tations are not built in such a naive manner; and, furthermore, they 
tend to be found in ML-specialized systems rather than on gener-
al-purpose MapReduce systems [26,31,35,36]. The reason is that 
high-performance ML goes far beyond an idealized MapReduce-like 
view, and involves numerous considerations that are not immedi-
ately obvious from the mathematical equations: considerations such 
as what data batch size to use for data parallelism, how to partition 
the model for model parallelism, when to synchronize model views 
between workers, step size selection for gradient based algorithms, 
and even the order in which to perform Δ updates.

The space of ML performance considerations can be intimidating 
even to veteran practitioners, and it is our view that a systems in-
terface for parallel ML is needed, both to ① facilitate the organized, 
scientific study of ML considerations, and also to ② organize these 
considerations into a series of high-level principles for developing 
new distributed ML systems. As a first step toward organizing these 
principles, we will divide them according to four high-level ques-
tions: If an ML program’s equations (Eq. (2)) tell the system “what 
to compute,” then the system must consider: ① How to distribute 
the computation; ② How to bridge computation with inter-machine 
communication; ③ How to communicate between machines; and 
④ What to communicate. By systematically addressing the ML con-
siderations that fall under each question, we show that it is possible 
to build sub-systems whose benefits complement and accrue with 
each other, and which can be assembled into a full distributed ML 
system that enjoys orders-of-magnitude speedups in ML program 
execution time.

Fig. 2. High-level illustration of simultaneous data and model parallelism in LDA top-
ic modeling. In this example, the three parallel workers operate on data/model blocks 
Z1

(1), Z2
(1), and Z3

(1) during iteration 1, then move on to blocks Z1
(2), Z2

(2), and Z3
(2) during 

iteration 2, and so forth.
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3.1. How to distribute: Scheduling and balancing workloads

In order to parallelize an ML program, we must first determine 
how best to partition it into multiple tasks—that is, we must parti-
tion the monolithic Δ in Eq. (2) into a set of parallel tasks, following 
the data parallel form (Eq. (9)) or the model parallel form (Eq. (11))—
or even a more sophisticated hybrid of both forms. Then, we must 
schedule and balance those tasks for execution on a limited pool 
of P workers or machines: That is, we ① decide which tasks go to-
gether in parallel (and just as importantly, which tasks should not 
be executed in parallel); ② decide the order in which tasks will be 
executed; and ③ simultaneously ensure that each machine’s share 
of the workload is well-balanced.

These three decisions have been carefully studied in the con-
text of operation-centric programs (such as the MapReduce sort 
example), giving rise (for example) to the scheduler system used in 
Hadoop and Spark [34]. Such operation-centric scheduler systems 
may come up with a different execution plan—the combination of 
decisions ① to ③ —depending on the cluster configuration, existing 
workload, or even machine failure; yet, crucially, they ensure that 
the outcome of the operation-centric program is perfectly consistent 
and reproducible every time. However, for ML iterative-convergent 
programs, the goal is not perfectly reproducible execution, but rath-
er convergence of the model parameters A to an optimum of the ob-
jective function L (i.e., A approaches to within some small distance ε 
of an optimum A*). Accordingly, we would like to develop a schedul-
ing strategy whose execution plans allow ML programs to provably 
terminate with the same quality of convergence every time—we will 
refer to this as “correct execution” for ML programs. Such a strategy 
can then be implemented as a scheduling system, which creates ML 
program execution plans that are distinct from operation-centric 
ones.

Dependency structures in ML programs. In order to generate 
a correct execution plan for ML programs, it is necessary to un-
derstand how ML programs have internal dependencies, and how 
breaking or violating these dependencies through naive paralleliza-
tion will slow down convergence. Unlike operation-centric programs 
such as sorting, ML programs are error-tolerant, and can automati-
cally recover from a limited number of dependency violations—but 
too many violations will increase the number of iterations required 
for convergence, and cause the parallel ML program to experience 
suboptimal, less-than-P-fold speedup with P machines.

Let us understand these dependencies through the Lasso and 
LDA topic model example programs. In the model parallel version 
of Lasso (Eq. (12)), each parallel worker p {1,…, P} performs one or 
more ΔLasso calculations of the form X T

· j y – k ≠ j X
T
· j X·k Ak (t – 1), which 

will then be used to update Aj. Observe that this calculation depends 
on all other parameters Ak, k ≠ j through the term X T

· j X·k Ak (t – 1), 
with the magnitude of the dependency being proportional to ① the 
correlation between the j-th and k-th data dimensions, X T

· j X·k ; and  
② the current value of parameter Ak (t – 1). In the worst case, both 
the correlation X T

· j X·k  and Ak (t – 1) could be large, and therefore up-
dating Aj, Ak sequentially (i.e., over two different iterations t, t + 1) 
will lead to a different result from updating them in parallel (i.e., at 
the same time in iteration t). Ref. [57] noted that, if the correlation is 
large, then the parallel update will take more iterations to converge 
than the sequential update. It intuitively follows that we should not 
“waste” computation trying to update highly correlated parameters 
in parallel; rather, we should seek to schedule uncorrelated groups 
of parameters for parallel updates, while performing updates for 
correlated parameters sequentially [39].

For LDA topic modeling, let us recall the ΔLDA updates (Eq. (8)): 
For every word token wij (in position j in document i), the LDA Gibbs 
sampler updates four elements of the model parameters B, δ (which 
are part of A): Bkold,wij

 (t – 1) – =1, Bknew,wij
 (t – 1) + =1, δi,kold

 (t – 1) – =1, and 

δi,knew
 (t – 1) + =1, where kold = zij (t – 1) and knew = zij (t – 1) ~ P (zij |xij, δi (t – 1), 

B (t – 1)). These equations give rise to many dependencies between 
different word tokens wij and wuv. One obvious dependency occurs 
when wij = wuv, leading to a chance that they will update the same 
elements of B (which happens when kold or knew are the same for both 
tokens). Furthermore, there are more complex dependencies inside 
the conditional probability P (zij |xij, δi (t – 1), B (t – 1)); in the interest 
of keeping this article at a suitably high level, we will summarize 
by noting that elements in the columns of, that is, B·,v, are mutually 
dependent, while elements in the rows of δ, that is, δi,·, are also mu-
tually dependent. Due to these intricate dependencies, high-perfor-
mance parallelism of LDA topic modeling requires a simultaneous 
data and model parallel strategy (Fig. 2), where word tokens wij must 
be carefully grouped by both their value v = wij and their document 
i, which avoids violating the column/row dependencies in B and 
δ [25].

Scheduling in ML programs. In light of these dependencies, how 
can we schedule the updates Δ in a manner that avoids violating 
as many dependency structures as possible (noting that we do not 
have to avoid all dependencies thanks to ML error tolerance)—yet, at 
the same time, does not leave any of the P worker machines idle due 
to lack of tasks or poor load balance? These two considerations have 
distinct yet complementary effects on ML program execution time: 
Avoiding dependency violations prevents the progress per iteration 
of the ML program from degrading compared to sequential execu-
tion (i.e., the program will not need more iterations to converge), 
while keeping worker machines fully occupied with useful compu-
tation ensures that the iteration throughput (iterations executed 
per second) from P machines is as close to P times that of a single 
machine. In short, near-perfect P-fold ML speedup results from 
combining near-ideal progress per iteration (equal to sequential 
execution) with near-ideal iteration throughput (P times sequen-
tial execution). Thus, we would like to have an ideal ML scheduling 
strategy that attains these two goals.

To explain how ideal scheduling can be realized, we return to our 
running Lasso and LDA examples. In Lasso, the degree to which two 
parameters Aj and Ak are interdependent is influenced by the data 
correlation X T

· j X·k  between the j-th and k-th feature dimensions—we 
refer to this and other similar operations as a dependency check. If 
X T

· j X·k  < κ for a small threshold κ, then Aj and Ak will have little influ-
ence on each other. Hence, the ideal scheduling strategy is to find 
all pairs (j, k) such that X T

· j X·k  < κ, and then partition the parameter 
indices j {1,…, m} into independent subsets A1, A2,…—where two 
subsets Aa and Ab are said to be independent if for any j Aa and any  
k Ab, we have X T

· j X·k  < κ. These subsets A can then be safely as-
signed to parallel worker machines (Fig. 3), and each machine will 
update the parameters j A sequentially (thus preventing depend-
ency violations) [39].

Fig. 3. Illustration of ideal Lasso scheduling, in which parameter pairs (j, k) are 
grouped into subsets (red blocks) with low correlation between parameters in 
different subsets. Multiple subsets can be updated in parallel by multiple worker 
machines; this avoids violating dependency structures because workers update 
the parameters in each subset sequentially.
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As for LDA, careful inspection reveals that the update equations 
ΔLDA for word token wij (Eq. (8)) may ① touch any element of column 
B· ,wij

 , and ② touch any element of row δi , · . In order to prevent parallel  
worker machines from operating on the same columns/rows of B 
and δ, we must partition the space of words {1,…, V} (correspond-
ing to columns of B) into P subsets V1,…, VP, as well as partition the 
space of documents {1,…, N} (corresponding to rows of δ) into P 
subsets D1,…, DP. We may now perform ideal data and model paral-
lelization as follows: First, we assign document subset Dp to machine 
p out of P; then, each machine p will only Gibbs sample word tokens 
wij such that i Dp and wij Vp. Once all machines have finished, 
they rotate word subsets Vp among each other, so that machine p 
will now Gibbs sample wij such that i ∈ Dp and wij ∈ Vp+1 (or for ma-
chine P, wij ∈ V1). This process continues until P rotations have com-
pleted, at which point the iteration is complete (every word token 
has been sampled) [25]. Fig. 2 illustrates this process.

In practice, ideal schedules like the ones described above may 
not be practical to use. For example, in Lasso, computing X T

· j X·k for all 
O(m2) pairs (j, k) is intractable for high-dimensional problems with 
large m (millions to billions). We will return to this issue shortly, 
when we introduce structure aware parallelization (SAP), a provably 
near-ideal scheduling strategy that can be computed quickly.

Compute prioritization in ML programs. Because ML programs 
exhibit non-uniform parameter convergence, an ML scheduler has 
an opportunity to prioritize slower-to-converge parameters Aj, 
thus improving the progress per iteration of the ML algorithm (i.e., 
because it requires fewer iterations to converge). For example, in 
Lasso, it has been empirically observed that the sparsity-inducing l1 
norm (Eq. (4)) causes most parameters Aj to ① become exactly zero 
after a few iterations, after which ② they are unlikely to become 
non-zero again. The remaining parameters, which are typically a 
small minority, take much longer to converge (e.g., 10 times more 
iterations) [39].

A general yet effective prioritization strategy is to select parame-
ters Aj with probability proportional to their squared rate of change, 
(Aj(t – 1) – Aj(t – 2))2 + ε, where ε is a small constant that ensures 
that stationary parameters still have a small chance to be selected. 
Depending on the ratio of fast- to slow-converging parameters, this 
prioritization strategy can result in an order-of-magnitude reduction 
in the number of iterations required to converge by Lasso regres-
sion [39]. Similar strategies have been applied to PageRank, another 
iterative-convergent algorithm [53].

Balancing workloads in ML programs. When executing ML 
programs over a distributed cluster, they may have to stop in order 
to exchange parameter updates, that is, synchronize—for example, 
at the end of Map or Reduce phases in Hadoop and Spark. In order 
to reduce the time spent waiting, it is desirable to load-balance the 
work on each machine, so that they proceed at close to the same 
rate. This is especially important for ML programs, which may ex-
hibit skewed data distributions; for example, in LDA topic models, 
the word tokens wij are distributed in a power-law fashion, where a 
few words occur across many documents, while most other words 
appear rarely. A typical ML load-balancing strategy might apply the 
classic bin packing algorithm from computer science (where each 
worker machine is one of the “bins” to be packed), or any other 
strategy that works for operation-centric distributed systems such 
as Hadoop and Spark.

However, a second, less-appreciated challenge is that machine 
performance may fluctuate in real-world clusters, due to subtle 
reasons such as changing datacenter temperature, machine failures, 
background jobs, or other users. Thus, load-balancing strategies 
that are predetermined at the start of an iteration will often suf-
fer from stragglers, machines that randomly become slower than 
the rest of the cluster, and which all other machines must wait for 
when performing parameter synchronization at the end of an it-

eration [37,40,60]. An elegant solution to this problem is to apply 
slow-worker agnosticism [38], in which the system takes direct 
advantage of the iterative-convergent nature of ML algorithms, and 
allows the faster workers to repeat their updates Δ while waiting 
for the stragglers to catch up. This not only solves the straggler 
problem, but can even correct for imperfectly-balanced workloads. 
We note that another solution to the straggler problem is to use 
bounded-asynchronous execution (as opposed to synchronous  
MapReduce-style execution), and we will discuss this solution in 
more detail in Section 3.2.

Structure aware parallelization. Scheduling, prioritization, and 
load balancing are complementary yet intertwined; the choice of 
parameters Aj to prioritize will influence which dependency checks 
the scheduler needs to perform, and in turn, the “independent 
subsets” produced by the scheduler can make the load-balancing 
problem more or less difficult. These three functionalities can be 
combined into a single programmable abstraction, to be implement-
ed as part of a distributed system for ML. We call this abstraction 
structure aware parallelization (SAP), in which ML programmers can 
specify how to ① prioritize parameters to speed up convergence; 
② perform dependency checks on the prioritized parameters, and 
schedule them into independent subsets; and ③ load-balance the 
independent subsets across the worker machines. SAP exposes a 
simple, MapReduce-like programming interface, where ML pro-
grammers implement three functions: ① “schedule(),” in which a 
small number of parameters are prioritized, and then exposed to 
dependency checks; ② “push(),” which performs ΔL in parallel on 
worker machines; and ③ “pull(),” which performs F. Load balanc-
ing is automatically handled by the SAP implementation, through a 
combination of classic bin packing and slow-worker agnosticism.

Importantly, the SAP schedule() does not naively perform O(m2) 
dependency checks; instead, a few parameters A are first selected 
via prioritization (where mA << ). The dependency checks are then 
performed on A, and the resulting independent subsets are updated 
via push() and pull(). Thus, SAP only updates a few parameters Aj per 
iteration of schedule(), push(), and pull(), rather than the full model 
A. This strategy is provably near-ideal for a broad class of model par-
allel ML programs: 

Theorem 1 (adapted from Ref. [35]): SAP is close to ideal exe-
cution. Consider objective functions of the form L = f(A) + r(A), where  
r (A) = 

j
r (Aj) is separable, A Rd, and f has β-Lipschitz continuous 

gradient in the following sense: 

                    
( ) ( ) ( )T T T

2
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Let X = [x1,…,xd] be the data samples re-represented as d feature vec-
tors. W.l.o.g., we assume that each feature vector xi is normalized, that 
is, 2

=1ix , i = 1,…, d. Therefore, T 1i j ≤x x  for all i and j.
Suppose we want to minimize L via model parallel coordinate de-

scent. Let Sideal() be an oracle (i.e., ideal) schedule that always proposes 
P random features with zero correlation. Let ( )

ideal
tA  be its parameter 

trajectory, and let ( )
SAP

tA  be the parameter trajectory of SAP scheduling. 
Then, 
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 − ≤  +
A A X X   (14)

for constants C, m, L, and P̂ . 
This theorem says that the difference between the SSAP() parame-

ter estimate ASAP and the ideal oracle estimate Aideal rapidly vanishes, 
at a fast 1/(t ＋ 1)2 = O(t–2) rate. In other words, one cannot do much 
better than SSAP() scheduling—it is near-optimal.

SAP’s slow-worker agnostic load balancing also comes with a 
theoretical performance guarantee—it not only preserves correct ML 
convergence, but also improves convergence per iteration over naive 
scheduling: 

Theorem 2 (adapted from Ref. [38]): SAP slow-worker agnosti-
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cism improves convergence progress per iteration. Let the current 
variance (intuitively, the uncertainty) in the model be Var (A), and 
let np > 0 be the number of updates performed by worker p (including 
additional updates due to slow-worker agnosticism). After np updates, 
Var (A) is reduced to 

( ) ( ) ( ) ( )
( )2

1 2

3

Var Var Var CoVar ,

cubic

pn
t p t p

t p

c n c n

c n O

η η

η

+ = − − ∇ +

+

A A A A L

    (15)

where, ηt > 0 is a step-size parameter that approaches zero as t→∞; c1, 
c2, c3 > 0 are problem-specific constants; L is the stochastic gradient 
of the ML objective function L; CoVar(a, b) is the covariance between a 
and b, and O(cubic) represents third-order and higher terms that shrink 
rapidly toward zero. 

A low variance Var (A) indicates that the ML program is close 
to convergence (because the parameters A have stopped changing 
quickly). The above theorem shows that additional updates np do 
indeed lower the variance—therefore, the convergence of the ML 
program is accelerated. To see why this is the case, we note that the 
second and third terms are always negative; furthermore, they are 
O(ηt), so they dominate the fourth positive term (which is O(ηt

2) and 
therefore shrinks toward zero faster) as well as the fifth positive 
term (which is third-order and shrinks even faster than the fourth 
term).

Empirically, SAP systems achieve order-of-magnitude speedups 
over non-scheduled and non-balanced distributed ML systems. One 
example is the Strads system [39], which implements SAP schedules 
for several algorithms, such as Lasso regression, matrix factorization, 
and LDA topic modeling, and achieves superior convergence times 
compared to other systems (Fig. 4).

3.2. How to bridge computation and communication: Bridging  
models and bounded asynchrony

Many parallel programs require worker machines to exchange 
program states between each other—for example, MapReduce sys-
tems such as Hadoop take the key-value pairs (a, b) created by all 
Map workers, and transmit all pairs with key a to the same Reduce 
worker. For operation-centric programs, this step must be exe-
cuted perfectly without error; recall the MapReduce sort example 
(Section 2), where sending keys to two different Reducers results 
in a sorting error. This notion of operational correctness in parallel 
programming is underpinned by the BSP model [61,62], a bridg-
ing model that provides an abstract view of how parallel program 
computations are interleaved with inter-worker communication. 
Programs that follow the BSP bridging model alternate between a 
computation phase and a communication phase or synchronization 
barrier (Fig. 5), and the effects of each computation phase are not 
visible to worker machines until the next synchronization barrier 

has completed.
Because BSP creates a clean separation between computation and 

communication phases, many parallel ML programs running under 
BSP can be shown to be serializable—that is to say, they are equiva-
lent to a sequential ML program. Serializable BSP ML programs enjoy 
all the correctness guarantees of their sequential counterparts, and 
these strong guarantees have made BSP a popular bridging model 
for both operation-centric programs and ML programs [32,34,63]. 
One disadvantage of BSP is that workers must wait for each other 
to reach the next synchronization barrier, meaning that load bal-
ancing is critical for efficient BSP execution. Yet, even well-balanced 
workloads can fall prey to stragglers, machines that become ran-
domly and unpredictably slower than the rest of the cluster [60], 
due to real-world conditions such as temperature fluctuations in 
the datacenter, network congestion, and other users’ programs or 
background tasks. When this happens, the program’s efficiency 
drops to match that of the slowest machine (Fig. 5)—and in a cluster 
with thousands of machines, there may even be multiple stragglers. 
A second disadvantage is that communication between workers 
is not instantaneous, so the synchronization barrier itself can take 
a non-trivial amount of time. For example, in LDA topic modeling 
running on 32 machines under BSP, the synchronization barriers 
can be up to six times longer than the iterations [37]. Due to these 
two disadvantages, BSP ML programs may suffer from low iteration 
throughput, that is, P machines do not produce a P-fold increase in 
throughput.

As an alternative to running ML programs on BSP, asynchronous 
parallel execution (Fig. 6) has been explored [28,33,52], in which 
worker machines never wait for each other, and always commu-
nicate model information throughout the course of each iteration. 
Asynchronous execution usually obtains a near-ideal P-fold increase 
in iteration throughput, but unlike BSP (which ensures serializability 
and hence ML program correctness), it often suffers from decreased 

Fig. 4. Objective function L progress versus time plots for three ML programs—(a) Lasso regression (100M features, 9 machines), (b) matrix factorization (MF) (80 ranks, 9 ma-
chines), (c) latent Dirichlet allocation (LDA) topic modeling (2.5M vocab, 5K topics, 32 machines)—executed under Strads, a system that realizes the structure aware paralleli-
zation (SAP) abstraction. By using SAP to improve progress per iteration of ML algorithms, Strads achieves faster time to convergence (steeper curves) than other general- and 
special-purpose implementations—Lasso-RR (a.k.a., Shotgun algorithm), GraphLab, and YahooLDA. Adapted from Ref. [39].

Fig. 5. Bulk synchronous parallel (BSP) bridging model. For ML programs, the 
worker machines wait at the end of every iteration for each other, and then ex-
change information about parameters Aj during the synchronization barrier. 
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convergence progress per iteration. The reason is that asynchronous 
communication causes model information to become delayed or 
stale (because machines do not wait for each other), and this in turn 
causes errors in the computation of Δ and F. The magnitude of these 
errors grows with the delays, and if the delays are not carefully 
bounded, the result is extremely slow or even incorrect convergence 
[37,40]. In a sense, there is “no free lunch”—model information must 
be communicated in a timely fashion between workers.

BSP and asynchronous execution face different challenges in 
achieving ideal P-fold ML program speedups—empirically, BSP ML 
programs have difficulty reaching the ideal P-fold increase in iter-
ation throughput [37], while asynchronous ML programs have dif-
ficulty maintaining the ideal progress per iteration observed in se-
quential ML programs [25,37,40,]. A promising solution is bounded- 
asynchronous execution, in which asychronous execution is permit-
ted up to a limit. To explore this idea further, we present a bridging 
model called stale synchronous parallel (SSP) [37,64], which gener-
alizes and improves upon BSP.

Stale synchronous parallel. Stale synchronous parallel (SSP) is a 
bounded-asynchronous bridging model, which enjoys a similar pro-
gramming interface to the popular BSP bridging model. An intuitive, 
high-level explanation goes as follows: We have P parallel workers 
or machines that perform ML computations Δ and F in an iterative 
fashion. At the end of each iteration t, SSP workers signal that they 
have completed their iterations. At this point, if the workers were 
instead running under BSP, a synchronization barrier would be 
enacted for inter-machine communication. However, SSP does not 
enact a synchronization barrier. Instead, workers may be stopped or 
allowed to proceed as SSP sees fit; more specifically, SSP will stop 
a worker if it is more than s iterations ahead of any other worker, 
where s is called the staleness threshold (Fig. 7).

More formally, under SSP, every worker machine keeps an 
iteration counter t, and a local view of the model parameters A. 
SSP worker machines “commit” their updates Δ, and then invoke 
a “clock()” function that ① signals that their iteration has ended, 
② increments their iteration counter t, and ③ informs the SSP 
system to start communicating Δ to other machines, so they can 
update their local views of A. This clock() is analogous to BSP’s 
synchronization barrier, but is different in that updates from one 
worker do not need to be immediately communicated to other 
workers—as a consequence, workers may proceed even if they 
have only received a partial subset of the updates. This means 
that the local views of A can become stale, if some updates have 
not been received yet. Given a user-chosen staleness threshold 
s ≥ 0, an SSP implementation or system enforces at least the fol-
lowing bounded staleness conditions: 
•	Bounded	clock	difference: The iteration counters on the 

slowest and fastest workers must be ≤ s apart—otherwise, 
SSP forces the fastest worker to wait for the slowest worker 
to catch up. 

•	Timestamped	updates: At the end of each iteration t (right 
before calling clock()), each worker commits an update Δ, 
which is timestamped with time t. 
•	Model	state	guarantees: When a worker with clock t com-

putes Δ, its local view of A is guaranteed to include all up-
dates Δ with timestamp ≤ t – s – 1. The local view may or may 
not contain updates Δ from other workers with timestamp 
> t – s – 1.
•	Read-my-writes: Each worker will always include its own 

updates Δ, in its own local view of A. 
Since the fastest and slowest workers are ≤ s clocks apart, a 

worker’s local view of A at iteration t will include all updates Δ 
from all workers with timestamps in [0, t – s – 1], plus some (or 
possibly none) of the updates whose timestamps fall in the range 
[t − s, t + s − 1]. Note that SSP is a strict generalization of BSP for 
ML programs: When s = 0, the first range becomes [0, t − 1] while 
the second range becomes empty, which corresponds exactly to 
BSP execution of an ML program.

Because SSP always limits the maximum staleness between 
any pair of workers to s, it enjoys strong theoretical convergence 
guarantees for both data parallel and model parallel execution. 
We state two complementary theorems to this effect: 

Theorem 3 (adapted from Ref. [40]): SSP data parallel con-
vergence theorem. Consider convex objective functions of the form  
L = f (A) =  T

t = 1  
ft (A), where the individual components ft are also con-

vex. We search for a minimizer A* via data parallel SGD on each com-
ponent ft under SSP, with staleness parameter s and P workers. Let the 
data parallel updates be Δt := –ηt t ft (At) with t tη η= . Under suitable 
conditions ( ft are L-Lipschitz and bounded divergence ( ) 2D F′ ≤A A ), 
we have the following convergence rate guarantee: 
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in particular, s is the maximum staleness under SSP; μγ is the average 
staleness experienced by the distributed system, and σγ is the variance 
of the staleness. 

This data parallel SSP theorem has two implications: First, data 
parallel execution under SSP is correct (just like BSP) because R[A]/T  
(the difference between the SSP parameter estimate and the true 
optimum) converges to O(T -1/2) in probability with an exponential 

Fig. 6. Asynchronous parallel execution. Worker machines running ML programs 
do not have to wait for each other, and information about model parameters Aj is 
exchanged asynchronously and continuously between workers. Because workers 
do not wait, there is a risk that one machine could end up many iterations slower 
than the others, which can lead to unrecoverable errors in ML programs. Under a 
BSP system, this would not happen because of the synchronization barrier. 

Fig. 7. Stale synchronous parallel (SSP) bridging model. Compared to BSP, worker 
machines running ML programs may advance ahead of each other, up to s iterations 
apart (where s is called the staleness threshold). Workers that get too far ahead are 
forced to stop, until slower workers catch up. Like asynchronous parallel execution, 
information about model parameters Aj is exchanged asynchronously and continu-
ously between workers (with a few additional conditions so as to ensure correct ML 
convergence), without the need for synchronization barriers. The advantage of SSP 
is that it behaves like asynchronous parallel execution most of the time, yet SSP can 
also stop workers as needed to ensure correct ML execution. 
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tail-bound. Second, it is important to keep the actual staleness and 
asynchrony as low as possible; the convergence bound becomes 
tighter with lower maximum staleness s, and lower average μγ and 
variance σγ of the staleness experienced by the workers. For this rea-
son, naive asynchronous systems (e.g., Hogwild! [31] and YahooLDA  
[28]) may experience poor convergence in complex production en-
vironments, where machines may temporarily slow down due to 
other tasks or users—in turn causing the maximum staleness s and 
staleness variance σγ to become arbitrarily large, leading to poor 
convergence rates.

Theorem 4: SSP model parallel asymptotic consistency. We 
consider minimizing objective functions of the form L = f(A, D) + g(A) 
where A ∈ Rd, using a model parallel proximal gradient descent pro-
cedure that keeps a centralized “global view,” A, (e.g., on a key-value 
store) and stale local worker views Ap on each worker machine. If the 
descent step size satisfies η < 1/(Lf + 2Ls), then the global view A and 
local worker views Ap will satisfy: 

(1) ( ) ( )
2

0
1

t
t t∞

=
+ − < ∞∑ A A ; 

(2) ( ) ( )lim 1 0
t

t t
→∞

+ − =A A , and for all p, ( ) ( )lim 0p

t
t t

→∞
− =A A ; 

(3) The limit points of {A(t)} coincide with those of {Ap(t)}, and both 
are critical points of L. 

Items 1 and 2 imply that the global view A will eventually stop 
changing (i.e., will converge), and the stale local worker views Ap will 
converge to the global view A; in other words, SSP model parallel ex-
ecution will terminate to a stable answer. Item 3 further guarantees 
that the local and global views Ap(t) and A(t) will reach an optimal 
solution to L; in other words, SSP model parallel execution outputs 
the correct solution. Given additional technical conditions, we can 
further establish that SSP model parallel execution converges at rate 
O(t –1).

The above two theorems show that both data parallel and model 
parallel ML programs running under SSP enjoy near-ideal conver-
gence progress per iteration (which approaches close to BSP and se-
quential execution). For example, the Bösen system [37,40,41] uses 
SSP to achieve up to ten-fold shorter convergence times, compared 
to the BSP bridging model—and SSP with properly selected staleness 
values will not exhibit non-convergence, unlike asynchronous ex-
ecution (Fig. 8). In summary, when SSP is effectively implemented 
and tuned, it can come close to providing the best of both worlds: 
near-ideal progress per iteration close to BSP, and near-ideal P-fold 
iteration througput similar to asynchronous execution—and hence, a 
near-ideal P-fold speedup in ML program execution time.

3.3. How to communicate: Managed communication and topologies

The bridging models (BSP and SSP) just discussed place con-

straints on when ML computation should occur relative to the com-
munication of updates Δ to model parameters A, in order to guaran-
tee correct ML program execution. However, within the constraints 
set by a bridging model, there is still room to prescribe how, or in 
what order, the updates Δ should be communicated over the net-
work. Consider the MapReduce sort example, under the BSP bridg-
ing model: The Mappers need to send key-value pairs (a, b) with the 
same key a to the same Reducer. While this can be performed via 
a bipartite topology (every Mapper communicates with every Re-
ducer), one could instead use a star topology, in which a third set of 
machines first aggregates all key-value pairs from the Mappers, and 
then sends them to the Reducers.

ML algorithms under the SSP bridging model open up an even 
wider design space: Because SSP only requires updates Δ to “arrive 
no later than s iterations,” we could choose to send more impor-
tant updates first, following the intuition that this should naturally 
improve algorithm progress per iteration. These considerations are 
important because every cluster or datacenter has its own physical 
switch topology and available bandwidth along each link. We will 
discuss these considerations with the view that choosing the correct 
communication management strategy will lead to a noticable im-
provement in both ML algorithm progress per iteration and iteration 
throughput. We now discuss several ways in which communication 
management can be applied to distributed ML systems.

Continuous communication. In the first implementations of 
the SSP bridging model, all inter-machine communication occurred 
right after the end of each iteration (i.e., right after the SSP clock() 
command) [37], while leaving the network idle at most other 
times (Fig. 9). The resulting burst of communication (gigabytes to 
terabytes) may cause synchronization delays (where updates take 
longer than expected to reach their destination), and these can be 
optimized away by adopting a continuous style of communication, 
where the system waits for existing updates to finish transmission 
before starting new ones [41].

Continuous communication can be achieved by a rate limiter 
in the SSP implementation, which queues up outgoing communi-
cations, and waits for previous communications to finish before 
sending out the next in line. Importantly, regardless of whether the 
ML algorithm is data parallel or model parallel, continuous commu-
nication still preserves the SSP bounded staleness conditions—and 
therefore, it continues to enjoy the same worst-case convergence 
progress per iteration guarantees as SSP. Furthermore, because 
managed communication reduces synchronization delays, it also 
provides a small (two- to three-fold) speedup to overall convergence 
time [41], which is partly due to improved iteration throughput (be-
cause of fewer synchronization delays), and partly due to improved 
progress per iteration (fewer delays also means lower average stale-

Fig. 8. Objective function L progress versus time plots for three ML programs—(a) LDA topic modeling, (b) Lasso regression, and (c) matrix factorization (MF)—executed under 
Bösen, a system that realizes the SSP bridging model. By using SSP (with a range of different staleness values) to improve the iteration throughput of ML algorithms, Bösen 
achieves faster time to convergence (steeper curves) than both the BSP bridging model (used in Hadoop and Spark) and fully asynchronous modes of execution. In particular, fully 
asynchronous execution did not successfully converge for Lasso and matrix factorization, and hence the curves are omitted. Adapted from Ref. [37].
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Fig. 9. Managed communication in SSP spreads network communication evenly 
across the duration of computation, instead of sending all updates at once right 
after the iteration boundary. 

ness in local parameter views A; hence, SSP’s progress per iteration 
is improved, according to Theorem 3).

Wait-free back-propagation. The deep learning family of ML 
models [20,52] presents a special opportunity for continuous com-
munication, due to their highly layered structure. Two observations 
stand out in particular: ① the “back-propagation” gradient descent 
algorithm—used to train deep learning models such as convolution-
al neural networks (CNNs)—proceeds in a layer-wise fashion; and 
② the layers of a typical CNN (such as “AlexNet” [20]) are highly 
asymmetric in terms of model size |A| and require computation for 
the back-propagation—usually, the top, fully connected layers have 
approximately 90% of the parameters, while the bottom convolu-
tional layers account for 90% of the back-propagation computa-
tion [56]. This allows for a specialized type of continuous communi-
cation, which we call wait-free back-propagation: After performing 
back-propagation on the top layers, the system will communicate 
their parameters while performing back-propagation on the bottom 
layers. This spreads the computation and communication out in an 
optimal fashion, in essence “overlapping 90% computation with 90% 
communication.”

Update prioritization. Another communication management 
strategy is to prioritize available bandwidth, by focusing on commu-
nicating updates (or parts of) Δ that contribute most to convergence. 
This idea has a close relationship with SAP, discussed in Section 3.1. 
While SAP prioritizes computation toward more important parame-
ters, update prioritization ensures that the changes to these impor-
tant parameters are quickly propagated to other worker machines, 
so that their effects are immediately felt. As a concrete example, in 
ML algorithms that use SGD (e.g., logistic regression and Lasso re-
gression), the objective function L changes proportionally to the pa-
rameters Aj, and hence the fastest-changing parameters Aj are often 
the largest contributors to solution quality.

Thus, the SSP implementation can be further augmented by a 
prioritizer, which rearranges the updates in the rate limiter’s outgo-
ing queue, so that more important updates will be sent out first. The 
prioritizer can support strategies such as the following: 

(1) Absolute magnitude prioritization: Updates to parameters 
Aj are re-ordered according to their recent accumulated change |δj|, 
which works well for ML algorithms that use SGD. 

(2) Relative magnitude prioritization: This is the same as absolute 
magnitude, but the sorting criteria is δj/Aj, that is, the accumulated 
change normalized by the current parameter value Aj. Empirically, 
these prioritization strategies already yield another 25% speedup, on 
top of SSP and continuous communication [41], and there is poten-
tial to explore strategies tailored to a specific ML program (similar to 
the SAP prioritization criteria for Lasso).

Parameter storage and communication topologies. A third 
communication management strategy is to consider the placement 
of model parameters A across the network (parameter storage), as 
well as the network routes along which parameter updates Δ should 
be communicated (communication topologies). The choice of pa-
rameter storage strongly influences the communication topologies 
that can be used, which in turn impacts the speed at which param-
eter updates Δ can be delivered over the network (as well as their 
staleness). Hence, we begin by discussing two commonly used para-
digms for storing model parameters (Fig. 10): 

(1) Centralized storage: A “master view” of the parameters A is 
partitioned across a set of server machines, while worker machines 
maintain local views of the parameters. Communication is asym-
metric in the following sense: Updates Δ are sent from workers to 
servers, and workers receive the most up-to-date version of the pa-
rameters A from the server. 

(2) Decentralized storage: Every worker maintains its own local 
view of the parameters, without a centralized server. Communica-
tion is symmetric: Workers send updates Δ to each other, in order to 

bring their local views of A up to date.
The centralized storage paradigm can be supported by a mas-

ter-slave network topology (Fig. 11), where machines are organized 
into a bipartite graph with servers on one side, and workers on the 
other; whereas the decentralized storage paradigm can be support-
ed by a peer-to-peer (P2P) topology (Fig. 12), where each worker 
machine broadcasts to all other workers. An advantage of the mas-
ter-slave network topology is that it reduces the number of messag-
es that need to be sent over the network: Workers only need to send 
updates Δ to the servers, which aggregate them using F, and update 

Fig. 10. Two paradigms for parameter storage: centralized and decentralized. Note 
that both paradigms have different communication styles: Centralized storage 
communicates updates Δ from workers to servers, and actual parameters A from 
servers to workers; decentralized storage only communicates updates Δ between 
workers. 

Fig. 11. Master-slave (bipartite) network topology for centralized parameter storage. 
Servers only communicate with workers, and vice versa. There is no server-server or 
worker-worker communciation. 

Fig. 12. Peer-to-peer (P2P) network topology for decentralized parameter storage. All 
workers may communicate with any other worker. 
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the master view of the parameters A. The updated parameters can 
then be broadcast to the workers as a single message, rather than 
as a collection of individual updates Δ. In total, only O(P) messages 
need to be sent. In contrast, P2P topologies must send O(P2) messag-
es every iteration, because each worker must broadcast Δ to every 
other worker.

However, when δ has a compact or compressible structure—
such as low-rank-ness in matrix-parameterized ML programs such 
as deep learning, or sparsity in Lasso regression—the P2P topol-
ogy can achieve considerable communication savings over the  
master-slave topology. By compressing or re-representing Δ in a 
more compact low-rank or sparse form, each of the O(P2) P2P mes-
sages can be made much smaller than the O(P) master-to-slave 
messages, which may not admit compression (because the messag-
es consist of the actual parameters A, not the compressible updates 
Δ). Furthermore, even the O(P2) P2P messages can be reduced, by 
switching from a full P2P to a partially connected Halton sequence 
topology (Fig. 13) [65], where each worker only communicates with 
a subset of workers. Workers can reach any other worker by routing 
messages through intermediate nodes. For example, the routing 
path 1→2→5→6 is one way to send a message from worker 1 to 
worker 6. The intermediate nodes can combine messages meant for 
the same destination, thus reducing the number of messages per 
iteration (and further reducing network load). However, one draw-
back to the Halton sequence topology is that routing increases the 
time taken for messages to reach their destination, which raises the 
average staleness of parameters under the SSP bridging model. For 
example, the message from worker 1 to worker 6 would be three 
iterations stale. The Halton sequence topology is nevertheless a 
good option for very large cluster networks, which have limited P2P 
bandwidth.

By combining the various aspects of “how to communicate”—
continuous communication, update prioritization, and a suitable 
combination of parameter storage and communication topology—
we can design a distributed ML system that enjoys multiplica-
tive speed benefits from each aspect, resulting in an almost or-
der-of-magnitude speed improvement on top of what SAP (how to 
distribute) and SSP (bridging models) can offer. For example, the 
Bösen SSP system enjoys up to an additional four-fold speedup from 
continuous communication and update prioritization, as shown in 
Figs. 14 and 15 [41].

3.4. What to communicate

Going beyond how to store and communicate updates Δ between 
worker machines, we may also ask “what” needs to be communi-
cated in each update Δ. In particular, is there any way to reduce the 
number of bytes required to transmit Δ, and thus further alleviate 
the comunication bottleneck in distributed ML programs [55]? This 
question is related to the idea of lossless compression in opera-
tion-centric programs; for example, Hadoop MapReduce is able to 
compresses key-value pairs (a, b) to reduce their transmission cost 
from Mappers to Reducers. For data parallel ML programs, a com-
monly used strategy for reducing the size of Δ messages is to aggre-
gate (i.e., sum) them before transmission over the network, taking 
advantage of the additive structure within F (such as in the Lasso 
data parallel example, Eq. (10)). Such early aggregation is preferred 
for centralized parameter storage paradigms that communicate full 
parameters A from servers to workers [37,40], and it is natural to ask 
if there are other strategies that may perhaps be better suited to dif-
ferent storage paradigms.

To answer this question, we may inspect the mathematical 
structure of ML parameters A, and the nature of their updates Δ. A 
number of popular ML programs have matrix-structured parame-
ters A (we use boldface to distinguish from the generic A). Examples 

include multiclass logistic regression (MLR), neural networks (NN) 
[60], distance metric learning (DML) [66], and sparse coding [23]. 
We refer to these as matrix-parameterized models (MPMs), and note 
that A can be very large in modern applications: In one application 
of MLR to Wikipedia [67], A is a 325K-by-10K matrix containing 
several billion entries (tens of gigabytes). It is also worth pointing 
out that typical computer cluster networks can at most transmit 

Fig. 13. Halton sequence topology for decentralized parameter storage. Workers may 
communicate with other workers through an intermediate machine; for example, 
worker 1 can reach worker 5 by relaying updates Δ through worker 2.

Fig. 14. Matrix factorization: Continuous communication with SSP achieves a further 
1.8-times improvement in convergence time over SSP alone. Experiment settings: 
Netflix dataset with rank 400, on eight machines (16 cores each) and gigabit ethernet 
(GbE). Adapted from Ref. [41].

Fig. 15. Latent Dirichlet allocation topic modeling: Continuous communication with 
SSP achieves a further three-times improvement in convergence time over SSP alone. 
Moreover, if update prioritization is also enabled, the convergence time improves by 
another 25%. Experiment settings: NYTimes dataset with 1000 topics, on 16 machines 
(16 cores each) and GbE. Adapted from Ref. [41]. 
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a few gigabytes per second between two machines; hence, naive 
synchronization of such matrices A and their updates Δ is not in-
stantaneous. Because parameter synchronization occurs many times 
across the lifetime of an iterative-convergent ML program, the time 
required for synchronization can become a substantial bottleneck. 

More formally, an MPM is an ML objective function with the fol-
lowing specialized form: 

                      ( ) ( ) ( )
1

1, min ,
N

i i i
i

f r
N =

 
= + 

 
∑ u v

A
x A A AL    (16)

where, the model parameters are a K-by-D matrix A RK×D; each 
loss function fi is defined over A and the data samples ( ){ } 1

,
N

i i i=
= u vx .  

Specifically, fi must depend on the product Aui (and not on A or ui 
individually). r(A) is a structure-inducing function such as a regu-
larizer. A well-known example of Eq. (16) is MLR, which is used in 
classification problems involving tens of thousands of classes K (e.g., 
web data collections such as Wikipedia). In MLR, A is the weight 
coefficient matrix, ui is the D-dimensional feature vector of data 
sample i, vi is a K-dimensional indicator vector representing the 
class label of data sample i, and the loss function fi is composed of 
a cross-entropy error function and a softmax mapping of Aui. A key 
property of MPMs is that each update Δ is a low-rank matrix and 
can be factored into small vectors, called sufficient factors, that are 
cheap to transmit over the network.
Sufficient factor broadcasting (SFB). In order to exploit the suffi-
cient factor property in MPMs, let us look closely at the updates Δ. 
The ML objective function Eq. (16) can be solved by either the sto-
chastic proximal gradient descent (SPGD) [37,52,60,65] or stochas-
tic dual coordinate ascent (SDCA) [68–72] algorithmic techniques, 
among others. For example, in SPGD, the update function Δ can be  
 decomposed into a sum over vectors bi ci

T, where
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and  

ci = ui; SDCA updates Δ also admit a similar decomposition† [55]. 
Instead of transmitting Δ = 

i
bici

T (total size KD) between workers, 
we can instead transmit the individual vectors bi and ci (total size 
S(K + D), where S is the number of data samples processed in the 

current iteration), and reconstruct Δ at the destination machine.
This sufficient factor broadcasting (SFB) strategy is well-suit-

ed to decentralized storage paradigms, where only updates Δ are 
transmitted between workers. It may also be applied to centralized 
storage paradigms, though only for transmissions from workers to 
servers; the server-to-worker direction sends full matrices A that 
no longer have the sufficient factor property [60]. At this point, it is 
natural to ask how the combination of decentralized storage and SFB 
interacts with the SSP bridging model: Will the ML algorithm still 
output the correct answer under such a P2P setting? The following 
theorem provides an affirmative answer. 

Theorem 5 (adapted from Ref. [55]): SFB under SSP, conver-
gence theorem. Let Ap(t), p = 1,…, P, and A(t) be the local worker 
views and a “reference” view respectively, for the ML objective function 
L in Eq. (16) (assuming r ≡ 0) being solved by SFB under the SSP bridg-
ing model with staleness s. Under mild assumptions, we have 

(1) ( ) ( )lim max 0p pt
t t

→∞
− =A A , that is, the local worker views con-

verge to the reference view, implying that all worker views will be the 
same after sufficient iterations t. 

(2) There exists a common subsequence of Ap(t) and A(t) that converges  

almost surely to a stationary point of L, with rate ( )logPs t
O

t
 
 
 

.

Intuitively, Theorem 5 says that all local worker views Ap(t) even-
tually converge to stationary points (local minima) of the objective 
function L, even though updates Δ can be stale by up to s iterations. 
Thus, SFB under decentralized storage is robust under the SSP bridg-
ing model—which is especially useful for topologies such as the Hal-
ton sequence that increase the staleness of updates, in exchange for 
lower bandwidth usage.

Empirically, SFB can greatly reduce the communication costs for 
MPMs: For a variety of MPMs, Fig. 16 shows the time taken to reach 
a fixed objective value using the BSP bridging model. MPMs running 
under SFB converge faster than when running under a centralized 
storage paradigm that transmits full updates Δ (referred to as “full 
matrix synchronization” or FMS). We also compare MPMs running 
under SFB to baseline implementations included with Spark v1.3.1 

† More generally, bi and ci may be “thin matrices” instead of vectors. SFB works as long as bi and ci are much smaller than A.

Fig. 16. Convergence time versus model size for (a) multiclass logistic regression (MLR), (b) distance metric learning (DML), and (c) L2-MLR.

Fig. 17. (a) MLR objective versus runtime; (b) samples versus runtime; (c) objective versus samples.
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(not all MPMs being evaluated are available on Spark). This is be-
cause SFB has lower communication costs, so a greater proportion 
of algorithm running time is spent on computation instead of on 
network waiting; we show this in Fig. 17, which plots data samples 
processed per second (i.e., iteration throughput) and algorithm 
progress per sample (i.e., progress per iteration) for MLR, under BSP 
consistency and varying minibatch sizes. Fig. 17(b) shows that SFB 
processes far more samples per second than FMS, while Fig. 17(c) 
shows that SFB and FMS yield exactly the same algorithm progress 
per sample under BSP.

To understand the impact of SFB on Δ communication costs, let 
us examine Fig. 18, which shows the total computation time as well 
as the network communication time required by SFB and FMS to 
converge, across a range of SSP staleness values. In general, higher 
Δ communication costs and lower staleness will increase the time 
the ML program spends waiting for network communication. For 
all staleness values, SFB requires far less network waiting (because 
SFBs are much smaller than full matrices in FMS). Computation time 
for SFB is slightly longer than for FMS because ① update matrices 
Δ must be reconstructed on each SFB worker, and ② SFB requires a 
few more iterations for convergence than FMS, due to slightly high-
er average parameter staleness compared with FMS. Overall, SFB’s 
reduction in network waiting time far surpasses the added compu-
tation time, and hence SFB outperforms FMS.

As a final note, there are situations that naturally call for a hybrid 
of SFB and full Δ transmission. A good example is deep learning 
using convolutional neural networks (previously discussed under 
the topic of wait-free back-propagation in Section 3.3): The top lay-
ers of a typical CNN are fully connected and use matrix parameters 
containing millions of elements, whereas the bottom layers are con-
volutional and involve tiny matrices with at most a few hundred el-
ements. It follows that it is more efficient to ① apply SFB to the top 
layers’ updates (transmission cost is S(K + D)  KD because K and 
D are large relative to S); and ② aggregate (sum) the bottom layers’ 
updates before transmission (cost is KD  S(K + D) because S is large 
relative to K and D) [56]. 

4. Petuum: A realization of the ML system design principles

We conclude this paper by noting that the four principles of 
ML system design have been partially realized by systems that are 
highly specialized for one or a few ML programs [28,31,36,58,60]. 
This presents ML practitioners with a choice between the aforemen-
tioned monolithic yet high-performance “towers” (specialized sys-
tems that require substantial engineering to maintain and upgrade), 
or the more general-purpose yet slower “platforms” such as Hadoop 
and Spark (which are relatively easy to deploy and maintain). In or-
der to address this dichotomy, we have realized the principles of ML 

system design in the Petuum distributed ML framework [35], whose 
architecture is outlined in Fig. 19. The intent behind Petuum is to 
provide a generic distributed system for ML algorithms running on 
big data, by abstracting system implementation details and the four 
design principles away from the ML programmer—who is then freed 
to focus on programming the key ML functions L, Δ, and F.

Compared to general-purpose distributed programming plat-
forms for operation-centric programs (such as Hadoop and Spark), 
Petuum takes advantage of the unique properties of iterative-con-
vergence ML programs—error tolerance, dependency structures, 
non-uniform convergence, and compact updates—in order to 
improve both the convergence rate and per-iteration time for ML 
algorithms, and thus achieve close-to-ideal P-fold speedup with 
P machines. Petuum runs on compute clusters and cloud comput-
ing, supporting from tens to thousands of machines, and provides 
programming interfaces for C++ and Java, while also supporting Yet 
Another Resource Negotiator (YARN) and Hadoop Distributed File 
System (HDFS) to allow execution on existing Hadoop clusters. Two 
major systems underlie Petuum (Fig. 19): 

(1) Bösen, a bounded-asynchronous distributed key-value store 
for data parallel ML programming: Bösen uses the SSP consistency 
model, which allows asynchronous-like performance that outper-
forms MapReduce and bulk synchronous execution, yet does not 
sacrifice ML algorithm correctness. 

(2) Strads, a dynamic scheduler for model parallel ML program-
ming: Strads performs fine-grained scheduling of ML update opera-
tions, prioritizing computation on the parts of the ML program that 
need it most, while avoiding unsafe parallel operations that could 
lead to non-convergence in ML programs.

Currently, Petuum features an ML library with over 10 ready-to-
run algorithms (implemented on top of Bösen and Strads), including 
classic algorithms such as logistic regression, K-means, and ran-
dom forest, and newer algorithms such as supervised topic models 
(MedLDA), deep learning, distance metric learning, and sparse cod-
ing. In particular, the Petuum deep learning system, Poseidon [56], 
fully exemplifies the “platform” nature of Petuum: Poseidon takes 
the well-established but single-machine Caffe project†, and turns 
it into a distributed GPU system by replacing the memory access 
routines within Caffe with the Bösen distributed key-value store’s 
distributed shared memory programming interfaces. The biggest 
advantage of this platform approach is familiarity and usability—
existing Caffe users do not have to learn a new tool in order to take 
advantage of GPUs distributed across a cluster.

Looking toward the future, we envision that Petuum might be-
come the foundation of an ML distributed cluster operating system 
that provides a single-machine or laptop-like experience for ML ap-
plication users and programmers, while making full use of the com-
putational capacity provided by datacenter-scale clusters with thou-

Fig. 18. Computation time versus network waiting time for (a) MLR, (b) DML, and (c) L2-MLR.

† http://caffe.berkeleyvision.org/
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Fig. 19. Architecture of Petuum, a distributed ML system for big data and big mod-
els. API: application programming interface; YARN: Yet Another Resource Negotia-
tor; HDFS: Hadoop Distributed File System.

sands of machines. Achieving this vision will certainly require new 
systems such as containerization, cluster resource management and 
scheduling, and user interfaces to be developed, which are necessary 
steps to reduce the substantial human or operational cost of deploy-
ing massive-scale ML applications in a datacenter environment. By 
building such systems into the ML-centric Petuum platform—which 
reduces the capital cost of ML applications by enabling them to run 
faster on fewer machines—we can thus prepare for the eventual big 
data computational shift from database-style operations to ML-style 
operations.
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