
Engineering 4 (2018) 53–60
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Cybersecurity—Article
A Practical Approach to Constructing a Knowledge Graph for
Cybersecurity
https://doi.org/10.1016/j.eng.2018.01.004
2095-8099/� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: liaiping@nudt.edu.cn (A. Li).
Yan Jia, Yulu Qi, Huaijun Shang, Rong Jiang, Aiping Li ⇑
School of Computer Science, National University of Defense Technology, Changsha 410073, China
a r t i c l e i n f o

Article history:
Received 10 December 2017
Revised 21 December 2017
Accepted 7 January 2018
Available online 9 February 2018

Keywords:
Cybersecurity
Knowledge graph
Knowledge deduction
a b s t r a c t

Cyberattack forms are complex and varied, and the detection and prediction of dynamic types of attack
are always challenging tasks. Research on knowledge graphs is becoming increasingly mature in many
fields. At present, it is very significant that certain scholars have combined the concept of the knowledge
graph with cybersecurity in order to construct a cybersecurity knowledge base. This paper presents a
cybersecurity knowledge base and deduction rules based on a quintuple model. Using machine learning,
we extract entities and build ontology to obtain a cybersecurity knowledge base. New rules are then
deduced by calculating formulas and using the path-ranking algorithm. The Stanford named entity rec-
ognizer (NER) is also used to train an extractor to extract useful information. Experimental results show
that the Stanford NER provides many features and the useGazettes parameter may be used to train a rec-
ognizer in the cybersecurity domain in preparation for future work.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

At present, some cybersecurity knowledge bases have already
been established for certain aspects of the cybersecurity domain.
For example, common vulnerability enumeration is a vulnerability
database in which each vulnerability has been given a unified ID, as
defined by the MITRE Corporation. Other information is also avail-
able, such as threat level, threat type, and so on. A process knowl-
edge base provides basic information about common processes,
and some well-known antivirus vendors have established enor-
mous signature bases about viruses. In addition, the Internet has
become a primary source of knowledge and information [1], and
contains a great deal of cybersecurity-related content such as secu-
rity blogs, hacker forums, and security bulletins. Making full use of
cybersecurity-related information from a variety of knowledge
bases and websites, and putting all this security-related knowledge
together, will be helpful for intrusion detection and cybersecurity
situational awareness.

The main work in this paper is divided into two parts. The first
part discusses building a cybersecurity knowledge base following a
three-step procedure, and proposes a framework to build the
knowledge base: First, obtain information by collecting and ana-
lyzing structured data and unstructured data; second, construct
the ontology according to the information that has been obtained;
and third, generate the cybersecurity knowledge base. The second
part discusses cybersecurity knowledge deduction. A quintuple
model of a cybersecurity knowledge base is proposed in order to
obtain new knowledge using the path-ranking algorithm.

The quintuple cybersecurity knowledge base model [2] pro-
posed in this paper contains the following five elements: concept,
instance, relation, properties, and rule. This model provides a foun-
dation for ontology construction. Machine learning is used to
extract cybersecurity-related entities because the conditional ran-
dom field model is suitable for named entity recognition. This
paper uses the Stanford named entity recognizer (NER) to extract
cybersecurity-related entities, and uses the Stanford NER base
implementation to train an extracting model in the cybersecurity
domain. To verify the influence of useGazettes, we built three dif-
ferent models. The experimental results show that useGazettes is
important as a means of training an NER in the cybersecurity
domain. Knowledge deduction includes attribute deduction and
relationship deduction. For attribute deduction, the new attribute
can be obtained using the attribute value prediction formula. For
relationship deduction, the new relationship between instances
can be obtained using the relational reasoning predictive formula
and the path-ranking algorithm.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2018.01.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2018.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:liaiping@nudt.edu.cn
https://doi.org/10.1016/j.eng.2018.01.004
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng

54 Y. Jia et al. / Engineering 4 (2018) 53–60
The rest of this paper is organized as follows: Section 2 dis-
cusses related work, and Section 3 presents our framework in
detail. Section 4 provides a knowledge deduction scheme, and Sec-
tion 5 provides a conclusion and suggestions for future work.
2. Related works

2.1. Ontology construction

A significant work was completed by Undercoffer et al. [3] from
the University of Maryland, who developed an ontology to model
attacks and related entities. The proposed ontology is only aimed
at attack. In order to represent concepts and entities that are rele-
vant to the cybersecurity domain, Joshi et al. [4] proposed an ontol-
ogy for cybersecurity derived from the ontology proposed by
Undercoffer. They extended the ontology to provide model rela-
tions that capture the US National Vulnerability Database (NVD)
schema structure and security exploit concepts. This ontology con-
tains 11 entity types (e.g., vulnerability, product, means, conse-
quence). More et al. [5] extended the ontology proposed by
Undercoffer and added rules to the reasoning logic. Their ontology
comprises three fundamental classes: means, consequences, and
targets.

In addition, a corporation named MITRE has been investigating
ways to develop an ontology for the cybersecurity domain [6,7].
MITRE has created several standards and datasets for specific topic
areas within the cybersecurity domain. A rich database provides
the greatest advantage. Based on the efforts of Undercoffer and
MITRE, Iannacone et al. [8] proposed an ontology for a cybersecu-
rity knowledge base. This ontology represents the result of an iter-
ative design process aimed at creating a knowledge representation
that can effectively combine data from as many sources as possible
within the cybersecurity domain. The resulting ontology contains
15 entity types and 115 properties in total.
2.2. Information extraction

The technology of information extraction has drawn increasing
attention. At present, there are two main methods of knowledge
extraction.

The first main method is based on knowledge engineering; it
relies heavily on extraction rules, but can allow the system to han-
dle information-extraction problems in specific domains. Most
early information-extraction systems are based on extraction rules.
The downside is that both domain-related professionals and lin-
guists are required to participate in the development of the system.
Because of the high extraction accuracy rate of an extraction sys-
tem, many information-extraction systems at this stage are based
on knowledge engineering.

Pinkston et al. [9] described a system in which an ontology was
defined to extract attack information. This work was based on the
revision of over 4000 intrusions and the strategies followed by
them to attack a system; it introduces the means and conse-
quences classes. Pinkston and coworkers adopted the rule-based
approach by using the best practices of the semantic web. Rehman
and Mustafa [10] described a system to extract information from a
text description of vulnerability. In this system, they used a basic
term frequency-inverse document frequency (TFIDF) score to
extract information from the common vulnerabilities and expo-
sures (CVEs). Lowis and Accorsi [11] presented another approach
to classify service-oriented architecture (SOA) vulnerabilities: They
used simple string matching on CVEs to classify datasets into var-
ious categories, and did not use machine learning techniques to
classify CVEs. Their work is mainly focused on SOA vulnerabilities.
The rule-based method has the advantage of high accuracy; how-
ever, for terms in which no obvious rules can be found, another
method must be used for extraction.

The second main method is based on machine learning. The
basic step involves training an information-extraction model using
a large quantity of training data; the information-extraction model
can then be used to extract related information. This method does
not require rules defined by professionals in advance, although it
requires a sufficient amount of training data to achieve good
results.

Lal [12] proposed a system that can identify relevant entities
from unstructured text. This systemmainly addresses cyberattacks
and software vulnerabilities; Lal also trained an NER to identify
entities related to cybersecurity. Mulwad et al. [13] developed a
framework that is used to detect and extract information about
vulnerabilities and attacks from web text. They trained a support
vector machine (SVM) classifier to identify potential vulnerability
descriptions. This classifier uses the standard unigram bag-of-
words vector model. Once a potential vulnerability description is
identified, the framework extracts security-related entities and
concepts using standard named entity recognition tools such as
Open Calais. The two works described the machine learning
method to automatically extract security-related information from
unstructured text. This method cannot identify security-related
entities accurately until sufficient training data is available.

2.3. Cybersecurity knowledge bases

(1) Vulnerability database. The existing abundant vulnerability
databases are the China National Vulnerability Database of Infor-
mation Security (CNNVD) [14] and the US NVD [15], which contain
a variety of vulnerabilities. Information on vulnerabilities includes
vulnerability names, vulnerability descriptions, vulnerability prior-
ities, damage methods, corresponding characteristics, and more. At
present, the vulnerability databases established by China and the
United States both follow a common naming standard, making vul-
nerabilities from completely different databases available in the
same standard. This standard greatly facilitates the sharing of vul-
nerability information.

(2) Attack rule base. This knowledge base collects information
on existing attacks. The information includes the attack name,
attack type, protocol, attack characteristic, attack description,
severity, and other properties. The Snort attack rule base is a rela-
tively perfect attack rule base in which every rule is stored as a line
in a file.

2.4. Knowledge-based reasoning

Knowledge-based reasoning can be roughly divided into
symbol-based reasoning and statistical-based reasoning. In artifi-
cial intelligence research, symbol-based reasoning is generally
based on classical logic (first-order predicate logic or propositional
logic) or on classical logic variation (e.g., default logic). Symbol-
based reasoning can not only infer a new relationship between
entities from an existing knowledge map using rules, but also per-
form logical conflict detection on a knowledge graph. Statistical-
based reasoning methods generally make use of the relationship
machine learning methods. The new entity relationship is learned
from the knowledge graph by statistical rules.

The purpose of type reasoning on knowledge maps is to learn
the relationship between instances and concepts in a knowledge
map. The SDType approach [16] uses the statistical distribution
of attributes connected by a triplet or predicate to predict the type
of an instance. This method can be used in any single data source
knowledge map, but it cannot do type reasoning across datasets.
Both Tipalo [17], a tool for automatically typing DBpedia entities,
and the Linked Hypernyms Dataset (LHD) [18] use unique abstract

Y. Jia et al. / Engineering 4 (2018) 53–60 55
data to extract instance types by specific patterns. Such methods
rely on structured text data and cannot be extended to other
repositories.

The schema induction method can be mainly subdivided into
the inductive logic program (ILP)-based method and the associa-
tion rules mining (ARM)-based method. The ILP-based method
combines machine learning and logic programming techniques to
enable the user to draw logical conclusions from both instance
and background knowledge. In Ref. [19], Lehmann et al. proposed
a method of defining axioms using the concept of a downward-
refined operator to learn description logic, starting with the most
general concept (top concept), and using a heuristic search to make
the concept continually specialized to reach a definition of the con-
cept. This approach was further extended in Ref. [20] to handle
large-scale semantic data such as DBpedia. These methods are all
implemented in DL-Learner [21]. Völker and Niepert [22] intro-
duced a statistical method for generating conceptual relationships
from knowledge maps, which access information through SPARQL
queries to build transactional tables. It then uses the ARM-based
method from the transaction table to extract some of the associ-
ated conceptual relationships. In their follow-up work, Fleis-
chhacker and Völker [23] used negative-association rule-
extracting techniques to study the concept of non-conceptual rela-
tions, and rich experimental results are given in Ref. [24].
Fig. 1. Framework for constructing a cybersecur
3. Framework design

Fig. 1 describes the approach to build a cybersecurity knowl-
edge base. The framework mainly involves three parts: a data
source, the construction of the ontology and extraction of informa-
tion related to cybersecurity, and the generation of a cybersecurity
knowledge graph.

Data sources can be divided into structured data and unstruc-
tured data. This paper presents an information-extraction method
that consists of the rule-based method and machine learning to
extract cybersecurity-related entities. The ontology, which is
shown in the bottom of the framework, lays a foundation for infor-
mation extraction. Therefore, constructing a proper ontology is
quite important.

As shown in Fig. 1, the knowledge is stored in the form of a
graph. The knowledge graph is a concept that was first proposed
by Google in 2012 [25]. It is a semantic network that stores entities
and relations between entities in the form of a graph. The advan-
tage of a knowledge graph is obvious: The efficiency of its associ-
ated queries is higher than that of traditional storage methods. It
is a flexible storage form that is quite easy to update. The construc-
tion of vertical knowledge, which is used in cybersecurity, must
consider the depth of knowledge and the overall hierarchical struc-
ture. Therefore, this work adopted a top-down approach and
ity knowledge graph. OS: operating system.

56 Y. Jia et al. / Engineering 4 (2018) 53–60
constructed the cybersecurity ontology first. Based on the ontol-
ogy, cybersecurity information is extracted from structured and
unstructured data. The following discussion focuses on ontology
construction and knowledge extraction.

3.1. Construction of cybersecurity ontology

This paper proposes a quintuple cybersecurity knowledge base
model comprising the aspects of concept, instance, relation, prop-
erties, and rule. The architecture of the cybersecurity knowledge
base is shown in Fig. 2.

The architecture shown in Fig. 2 contains three ontologies:
assets, vulnerability, and attack. Fig. 3 presents the cybersecurity
ontology.

As shown in Fig. 3, there are five entity types, as follows:
� Vulnerability. Each of the records in the vulnerability database
corresponds to an instance of a vulnerability type. Every vulner-
ability has its own unique CVE ID.

� Assets. The assets include the software and the operating sys-
tem (OS) in this paper.

� Software. This is a subclass of assets (e.g., Adobe Reader).
� OS. This is a subclass of assets (e.g., Ubuntu 14.04).
� Attack. Most attacks can be regarded as an intrusion aimed at a
certain vulnerability. The process of an attack can be a process
of vulnerability exploitation.

3.2. Extraction of cybersecurity-related entities: A method based on
machine learning

A conditional random field (CRF) is an undirected graph model
based on statistical sequence identification and segmentation. The
main idea of the model comes from the maximum entropy model.
Fig. 2. The architecture of the cybersecurity knowl

Fig. 3. The cybersec
Its simplest form is the linear CRF, in which the nodes in the model
form a linear structure. A linear CRF corresponds to a finite state
machine, which is well suited for labeling linear data sequences.

NER problems can be defined as annotations of sequences—that
is, in terms of whether or not the observed words belong to a pre-
defined set of features. The CRF is the probability model of the
annotation sequence. There is no independent assumption; there-
fore, features can be arbitrarily selected and globally normalized,
and the global optimal solution can be obtained. It preserves the
advantages of the conditional probability framework, such as the
maximum entropy Markov model, and solves the problem of mar-
ker bias. Therefore, the CRF model is suitable for named entity
recognition. Simple linear CRF is currently the best method for
named entity recognition [26]. It models the probability distribu-
tion P(y|x), in which x is the sequence of observation and y is the
sequence of labels. P(y|x) is calculated by the following formula:

Pðy xj Þ /
YN
j¼1

exp
XM
i¼0

kif iðyj�1; yj; xjÞ ð1Þ

where N is the number of tokens and M is the number of features.
Typically, fi is binary and is shown as the following formula:

f iðyj�1; yj; xjÞ ¼
1; if yj�1 is OS; yj is OS; and xj is XP
0; otherwise

�
ð2Þ

The Stanford NER [27] provides a general implementation of
linear CRF sequence models. Therefore, it is also known as the
CRFClassifier. In this study, we relied on the Stanford NER to
extract cybersecurity-related entities. There are many options for
features in the Stanford NER. We used the Stanford NER base
implementation to train an extracting model, simply because our
goal was also to train an NER in the cybersecurity domain.
edge base. DDoS: distributed denial of service.

urity ontology.

Y. Jia et al. / Engineering 4 (2018) 53–60 57
It is important to choose features when building a model; here,
a feature should be chosen that can better identify cybersecurity-
related entities. A good combination of features is key in training
a good extraction model. The Stanford NER provides over 70 fea-
tures [28] that can be used to train a model. Determining proper
features is not an easy task, because not much documentation
exists about these features. Thus, the existing feature-selection
algorithm was not helpful for our work. We had to analyze the fea-
tures and select what we thought would be useful to train a model.
We then verified our ideas by means of experiments. After many
experiments, we determined a feature set that was used to train
an NER and that achieved a good recognition effect. The features
within the feature set we determined and used to train the NER
are as follows:
� UseNGrams. This makes features from letter n-grams, that is,
substrings of the word.

� MaxNGramLeng. The value type of this feature is ‘‘int.” If the
value of this feature is positive, n-grams above this value will
not be used in the model. In this paper, we set the value of
maxNGramLeng to 6.

� UsePrev. This can provide the feature for <previous word, class
of previous word>; together with other options, it enables other
previous features, such as <previous tag, class>. This results in
features that are based on relationships between a current word
and a pair: <previous word, class of previous word>. When
there are successive words that belong to same class, this fea-
ture is very useful.

� UseNext. This is similar to the feature of UsePrev.
� UseWordPairs. This is based on two pairs: <previous word, cur-
rent word, class> and <current word, next word, class>.

� UseTaggySequences. This is an important feature that uses the
sequence of classes instead of words. It uses first-, second-,
and third-order class and tag sequence interaction features.

� UseGazettes. If it is true, the next feature named gazette will
point out the files by acting as an entity dictionary.

� Gazette. This value can be one or more filenames (i.e., names
separated by a comma, semicolon, or space); if it is provided,
entity dictionaries are loaded from these files. Each line should
be an entity class name, followed by white space, and then fol-
lowed by an entity (which might be a phrase of several tokens
with a single space between words).

� CleanGazette. If true, this feature only fires when the whole
word or phrase is matched in the gazette. For example, if the
phrase ‘‘Windows 7” is present in the gazette, then the whole
phrase should be matched in the document.

� SloppyGazette. If true, a gazette feature fires when any token of
a gazette entry matches. In this example, ‘‘Windows” can be
matched with ‘‘Windows 7.”
This thesis uses the gazette feature for the software and OS

classes. The Stanford NER provides two options to implement the
gazette feature. Experiments proved the gazette feature and the
cleanGazette option to be very good choices, as they improved
recognition accuracy for the software and OS classes.

In order to use this feature, we summarized information from
the field-of-influence platform in the vulnerability database and
built an entity dictionary. The first column in the dictionary is
the entity type, and the second column is the specific entity.
4. Knowledge deduction

4.1. Data source

Vulnerability includes existing vulnerabilities that can be col-
lected. Attacks include the most popular attacking techniques
today. The sources of the vulnerabilities are the CVE, the NVD,
SecurityFocus, CXSECURITY, Secunia, the China National Vulnera-
bility Database (CNVD), the CNNVD, and the Security Content
Automation Protocol Chinese Community (SCAP). The data sources
of the attack mainly include two categories: One category is from
the information security website, which includes Pediy BBS, Free-
buf, Kafan BBS, and the Open Web Application Security Project
(OWASP). The other category is from the enterprise’s self-built
information-response center, including the 360 Security Response
Center (360SRC) and the Alibaba Security Response Center (ASRC).
4.2. Principle analysis

K is used to represent the knowledge group; here, K = <concept,
instance, relation, properties, rule>, where:
� Concept = {concepti, i = 1, . . ., n}. The concept is a set of the
abstract ontology, such as the OS, software, attack, and so on.

� Instance = {instancei, i = 1, . . ., m}. The instance is a set of con-
crete examples, such as Windows 7, Adobe Reader, distributed
denial of service (DDoS), and so on.

� Properties = {<instancei, propertiesij, valuej>}. The properties are
a set of instance attribute values.

� Relation = <concepti, relationcc, conceptj>|<concepti, relationci,
instancej>|<instancei, relationii, instancej>. The relation shows
the relationship between instances, such as subClassOf, instan-
ceOf, is a (ISA), and so on.

� Rule = {rule|rule = <instancei, new relationij, instancej>|<con-
cepti, new relationij, instancej>|<instancei, propertiesij, new
valuej>, based on K}. The rules are used to deduce new attribute
values and new relationships.
The most important part of the knowledge group models pre-

sented in this paper is the rules. These rules can be used to deduce
new relationships and new attribute values. The following discus-
sion is devoted to how to deduce new attribute values and new
relationships.

Attribute deduction uses the existing attributes of the instance
and conditions to deduce new attributes. For example, one of Ming
Yao’s properties is his birthday. Given the current year and Ming
Yao’s birthday, his age can be obtained. As another example, if
the record shows the number of times a host is scanned, then
the total scanned number can be obtained using simple statistics.

Relationship deduction uses the relationships among existing
instances to deduce the new relationships among the instances.
For example, given Relation 1 (Si Li, birthplace, Beijing), Relation
2 (Si Li, residence, Shanghai), Relation 3 (Beijing, belongs to the
country, China), Relation 4 (Shanghai, belongs to the country,
China), Relation 5 (Si Li, nationality, Chinese), Relation 6 (Si Li,
classmates, San Zhang), and Relation 7 (San Zhang, birthplace,
Beijing), a new relationship can be obtained: Relation 8 (San Zhang,
nationality, Chinese).
4.3. The result of the deduction

4.3.1. Attribute deduction
As shown in Fig. 4, there are three instances: Ni, Nj, and Nl. Each

instance corresponds to keys and values.
Attributes are represented by (node, key, value) pairs. The pre-

diction formula of the attribute value, Valueik, is as follows:

Valueik ¼
Xm
j¼1

kj � f ij keyj; valuej
� �þXl

t¼1

rt �
Xm
j¼1

kj � f ijðkeyj

þ valuejÞ ð3Þ
For Ni, the new attribute can be obtained by calculating the

above formula, as shown in Fig. 5.

Fig. 4. Instances of the attribute.

Fig. 5. Generating a new attribute value. The red part of Ni is the new attribute
value.

58 Y. Jia et al. / Engineering 4 (2018) 53–60
4.3.2. Relationship deduction
There are three types of commonly used reasoning methods:

embedding-based technology, which is based on low-
dimensional vector representation; path-ranking algorithms,
which are traditional path-sorting algorithms; and probabilistic
graphical models such as the Markov chain. In this paper, we use
the path-sorting algorithms. The basic idea of path sorting is to
use the path connecting two entities as a feature to predict the
relationship between the two entities. Using the path-sorting algo-
rithms for a given relationship, we can determine whether such a
relationship exists between the two entities.

The attribute values and relationships among the instances Ni,
Nj, and Nl are shown in Fig. 6:
Fig. 6. Relationships between instances.
The predictive formula of relational reasoning is as follows:

Scoreðl; jÞ ¼
X
p2Q

Path½el; ej; lengthðpÞ 6 n� �xp ð4Þ

wherexp is the weight of the reachable path, p, from i to j. A length
p � n indicates that the path length is less than or equal to n. In this
case, if Scoreðl; jÞ P s, s is the threshold, then elj is established;
otherwise, elj is invalid.

Through the path-sorting algorithm, a new relationship can be
obtained, as shown in Fig. 7.

4.4. Evaluation criteria

In information retrieval and extraction systems, there are two
main evaluation indicators: precision and recall. Sometimes, in
order to comprehensively evaluate the performance of the system,
the harmonic mean of precision and recall is calculated. This is
usually referred to as the F-measure. In this paper, we used F1,
which is a special form of the F-measure. Precision, recall, and F1
are defined by true positives, false positives, and false negatives.
The definition is as follows:
� True positives (TP): This is a collection of the class members
that are correctly labeled as belonging to a particular class.

� False positives (FP): This is a collection of the class members
that are mislabeled as belonging to a particular class.

� False negatives (FN): This is a collection of the items that are not
labeled as any class by the system, although they actually
belong to some class.
Precision is given by:

Precision ¼ TP
TPþ FP

ð5Þ

Recall is given by:

Recall ¼ TP
TPþ FN

ð6Þ

F1 is given by:

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

ð7Þ
4.5. Experimental results

We merged the annotated data from four data sources into one
dataset. To verify the influence of useGazettes, we built three mod-
els (NER1, NER2, and NER3). NER1 did not use useGazettes as its
feature, while NER2 used useGazettes and chose the option of
cleanGazette. NER3 also used useGazettes, but its option was
Fig. 7. A new relationship between instances. The red dotted line with the arrow is
the new relationship, elj.

Y. Jia et al. / Engineering 4 (2018) 53–60 59
sloppyGazette. We then adopted an approach of 10-fold cross-
validation to evaluate these models. We divided the data into 10
data blocks. Nine tenths of the blocks were used as training data,
and the rest was used as testing data. The following tables show
the average of the precision, recall, and F1 measures for the three
models.

At the beginning, we chose features without useGazettes to
train the NER1. The average recognition results of NER1 are shown
in Table 1; the table shows that the precision of consequence is rel-
atively high. Regarding the F1 measure, the recognition rates of
software and vulnerability are close to each other and are higher
Table 1
Recognition results of NER1.

Entity Precision Recall F1

Software 0.700 0.795 0.745
OS 0.779 0.691 0.732
Vulnerability 0.805 0.689 0.743
Attack 0.822 0.597 0.692
Total 0.739 0.735 0.737

Table 2
Recognition results of NER2 and NER3.

Model Entity

NER2
(cleanGazette)

Software
OS
Vulnerability
Attack
Total

NER3
(sloppyGazette)

Software
OS
Vulnerability
Attack
Total

Fig. 8. Recognition results for each entity type. (a)
than those of any other entity type; that is, the recognition of soft-
ware and vulnerability achieved good performance in terms of
overall recognition effect.

We then used features that included useGazettes and chose the
option of cleanGazette to train NER2. NER3 was trained based on
features that included useGazettes with sloppyGazette as its
option. The average recognition results are shown in Table 2.

As shown in Table 2, in the recognition results of NER2, the
recognition for software achieved good overall performance. For
NER3, the recognition for OS achieved a high F1 value. In terms of
the recognition of software and OS, NER3 achieved better overall
performance than NER2. This result indicates that the sloppyGaz-
ette option is helpful for recognizing cybersecurity-related entities.
The F1 measures of both consequence and mean in NER2 and NER3
are still low, both being less than 70%. An intuitive comparison
between the three models is presented in Fig. 8.

As shown in Fig. 8, in terms of the recognition accuracy of soft-
ware and OS, including the recall and F1 measure, both NER2 and
NER3 are higher than NER1. This result verified the importance
of useGazettes in training an NER in the cybersecurity domain.
Regarding consequence and mean, an entity dictionary is difficult
to build. Without gazette, the recognition accuracy was not high.
Precision Recall F1

0.809 0.838 0.823
0.752 0.875 0.809
0.753 0.632 0.688
0.884 0.559 0.685
0.789 0.799 0.794

0.877 0.838 0.857
0.832 0.904 0.866
0.775 0.632 0.696
0.875 0.538 0.667
0.852 0.805 0.828

Software; (b) OS; (c) consequence; (d) mean.

60 Y. Jia et al. / Engineering 4 (2018) 53–60
5. Conclusion and future work

This paper builds an ontology for cybersecurity that is based on
vulnerability, and puts forward a method to build a cybersecurity
knowledge base. The Stanford NER was used to train an extractor
to extract cybersecurity-related entities; however, the recognition
accuracy needs further improvement. In addition, new entity attri-
butes and new relationships between entities can be obtained
using deductive rules.

In future, themost important work will be to enrich the cyberse-
curity knowledge base and the rules of deduction, and then apply
them to the research of intrusion detection and situational
awareness.

Acknowledgements

We are grateful for the support of the National Natural Science
Foundation of China (U163215, 61472433, 61732022, 61732004,
61672020, and 61502517) and the National Key Research and
Development Program (2016YFB0800802, 2016YFB0800803,
2016YFB0800804, 2017YFB0802204, 2016QY03D0601,
2016QY03D0603, and 2016YFB0800303).

Compliance with ethics guidelines

Yan Jia, Yulu Qi, Huaijun Shang, Rong Jiang, and Aiping Li
declare that they have no conflict of interest or financial conflicts
to disclose.

References

[1] Zhu J, Zhang J, Zhang C, Wu Q, Jia Y, Zhou B, et al. CHRS: Cold start
recommendation across multiple heterogeneous information networks. IEEE
Access 2017;5:15283–99.

[2] Zhu X, Huang J, Zhou B, Li A, Jia Y. Real-time personalized twitter search based
on semantic expansion and quality model. Neurocomputing 2017;254:13–21.

[3] Undercoffer J, Joshi A, Pinkston J. Modeling computer attacks: An ontology for
intrusion detection. In: Vigna G, Jonsson E, Kruegel C, editors. RAID 2003:
Recent advances in intrusion detection. Berlin: Springer; 2003. p. 113–35.

[4] Joshi A, Lal R, Finin T, Joshi A. Extracting cybersecurity related linked data from
text. In: Proceedings of the 7th IEEE international conference on semantic
computing. Los Alamitos: IEEE Computer Society Press; 2013. p. 252–9.

[5] More S, Matthews M, Joshi A, Finin T. A knowledge-based approach to
intrusion detection modeling. In: Proceedings of 2012 IEEE symposium on
security and privacy workshops. Los Alamitos: IEEE Computer Society Press;
2012. p. 75–81.

[6] Obrst L, Chase P, Markeloff R. Developing an ontology of the cybersecurity
domain. CEUR Workshop Proc 2012;966:49–56.

[7] Parmelee MC. Toward an ontology architecture for cyber-security standards.
CEUR Workshop Proc 2010;713:116–23.

[8] Iannacone M, Bohn S, Nakamura G, Gerth J, Huffer K, Bridges R, et al.
Developing an ontology for cybersecurity knowledge graphs. In: Proceedings
of the 10th annual cyber and information security research conference. New
York: ACM, Inc.; 2015.
[9] Pinkston J, Undercoffer J, Joshi A, Finin T. A target-centric ontology for
intrusion detection. In: Proceedings of the IJCAI-03 workshop on ontologies
and distributed systems, Aug 9–15, 2003, Acapulco, Mexico; 2003. p. 47–58.

[10] Rehman S, Mustafa K. Software design level vulnerability classification model.
Int J Comput Sci Secur 2012;6(4):238–55.

[11] Lowis L, Accorsi R. On a classification approach for SOA vulnerabilities. In:
Proceedings of the 33rd annual IEEE international computer software and
applications conference. Los Alamitos: IEEE Computer Society Press; 2009. p.
439–44.

[12] Lal R. Information extraction of cybersecurity related terms and concepts
from unstructured text [dissertation]. College Park: University of Maryland;
2013.

[13] Mulwad V, Li W, Joshi A, Finin T, Viswanathan K. Extracting information about
security vulnerabilities from web text. In: Hübner JF, Petit JM, Suzuki E,
editors. Proceedings of 2011 IEEE/WIC/ACM international conference on web
intelligence and intelligent agent technology—workshops. Los Alamitos: IEEE
Computer Society Press; 2011. p. 257–60.

[14] CNNVD.org.cn [Internet]. Beijing: China Information Technology Security
Evaluation Center; [cited 2017 Jul 25]. Available from: http://www.cnnvd.
org.cn/. Chinese.

[15] NVD.nist.gov [Internet]. Gaithersburg: National Institute of Standards and
Technology; [cited 2017 Jul 25]. Available from: https://nvd.nist.gov/.

[16] Paulheim H, Bizer C. Type inference on noisy RDF data. In: Alani H, Kagal L,
Fokoue A, Groth P, Biemann C, Parreira JX, et al., editors. The semantic web—
ISWC 2013: Proceedings of the 12th international semantic web
conference. Berlin: Springer; 2013. p. 510–25.

[17] Paulheim H, Bizer C. Type inference on noisy RDF data. In: Cudré-Mauroux P,
Heflin J, Sirin E, Tudorache T, Euzenat J, Hauswirth M, et al., editors. The
semantic web—ISWC 2012: Proceedings of the 11th international semantic
web conference. Berlin: Springer; 2012. p. 65–81.

[18] Kliegr T. Linked hypernyms: Enriching DBpedia with targeted hypernym
discovery. J Web Semant 2015;31:59–69.

[19] Lehmann J, Auer S, Bühmann L, Tramp S. Class expression learning for ontology
engineering. J Web Semant 2011;9(1):71–81.

[20] Hellmann S, Lehmann J, Auer S. Learning of OWL class descriptions on very
large knowledge bases. Int J Semant Web Inf Syst 2009;5(2):25–48.

[21] Lehmann J. DL-learner: Learning concepts in description logics. J Mach Learn
Res 2009;10(11):2639–42.

[22] Völker J, Niepert M. Statistical schema induction. In: Antoniou G, Grobelnik M,
Simperl E, Parsia B, Plexousakis D, De Leenheer P, et al., editors. The semantic
web: Research and applications: Proceedings of the 8th extended semantic
web conference. Berlin: Springer; 2011. p. 124–38.

[23] Fleischhacker D, Völker J. Inductive learning of disjointness axioms. In:
Meersman R, Dillon T, Herrero P, Kumar A, Reichert M, Qing L, et al., editors.
On the move to meaningful internet systems: OTM 2011: Proceedings of
confederated international conferences: CoopIS, DOA-SVI, and ODBASE
2011. Berlin: Springer; 2011. p. 680–97.

[24] Völker J, Fleischhacker D, Stuckenschmidt H. Automatic acquisition of class
disjointness. J Web Semant 2015;35(Pt 2):124–39.

[25] Singhal A. Introducing the knowledge graph: Things, not strings [Internet].
[updated 2012 May 16; cited 2017 Jul 25]. Available from: https://googleblog.
blogspot.com/2012/05/introducing-knowledge-graphthings-not.html.

[26] Lin D, Wu X. Phrase clustering for discriminative learning. In: Proceedings of
the 47th annual meeting of the association for computational linguistics and
the 4th international joint conference on natural language processing of the
AFNLP. Singapore: Suntec; 2009. p. 1030–8.

[27] Finkel JR, Grenager T, Manning C. Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Knight K, Ng HT,
Oflazer K, editors. Proceedings of the 43rd annual meeting of the association
for computational linguistics. Stroudsburg: Association for Computational
Linguistics; 2005. p. 363–70.

[28] NERFeatureFactory [Internet]. Stanford: Stanford NLP Group; [updated 2013
Jun 26; cited 2017 Jul 25]. Available from: http://nlp.stanford.edu/
nlp/javadoc/javanlp/edu/stanford/nlp/ie/NERFeatureFactory.html.

http://refhub.elsevier.com/S2095-8099(18)30109-7/h0005
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0005
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0005
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0010
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0010
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0015
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0015
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0015
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0020
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0020
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0020
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0025
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0025
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0025
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0025
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0030
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0030
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0035
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0035
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0040
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0040
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0040
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0040
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0050
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0050
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0055
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0055
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0055
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0055
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0060
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0060
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0060
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0065
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0065
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0065
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0065
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0065
http://www.cnnvd.org.cn/
http://www.cnnvd.org.cn/
https://nvd.nist.gov/
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0080
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0080
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0080
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0080
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0085
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0085
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0085
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0085
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0090
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0090
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0095
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0095
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0100
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0100
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0105
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0105
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0110
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0110
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0110
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0110
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0115
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0115
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0115
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0115
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0115
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0120
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0120
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graphthings-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graphthings-not.html
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0130
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0130
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0130
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0130
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0135
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0135
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0135
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0135
http://refhub.elsevier.com/S2095-8099(18)30109-7/h0135
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/NERFeatureFactory.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/NERFeatureFactory.html

	A Practical Approach to Constructing a Knowledge Graph for Cybersecurity
	1 Introduction
	2 Related works
	2.1 Ontology construction
	2.2 Information extraction
	2.3 Cybersecurity knowledge bases
	2.4 Knowledge-based reasoning

	3 Framework design
	3.1 Construction of cybersecurity ontology
	3.2 Extraction of cybersecurity-related entities: A method based on machine learning

	4 Knowledge deduction
	4.1 Data source
	4.2 Principle analysis
	4.3 The result of the deduction
	4.3.1 Attribute deduction
	4.3.2 Relationship deduction

	4.4 Evaluation criteria
	4.5 Experimental results

	5 Conclusion and future work
	ack20
	Acknowledgements
	Compliance with ethics guidelines
	References

