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With the development of sophisticated image editing and manipulation tools, the originality and authen-
ticity of a digital image is usually hard to determine visually. In order to detect digital image forgeries,
various kinds of digital image forensics techniques have been proposed in the last decade. Compared with
active forensics approaches that require embedding additional information, passive forensics approaches
are more popular due to their wider application scenario, and have attracted increasing academic and
industrial research interests. Generally speaking, passive digital image forensics detects image forgeries
based on the fact that there are certain intrinsic patterns in the original image left during image acqui-
sition or storage, or specific patterns in image forgeries left during the image storage or editing. By ana-
lyzing the above patterns, the originality of an image can be authenticated. In this paper, a brief review on
passive digital image forensic methods is presented in order to provide a comprehensive introduction on
recent advances in this rapidly developing research area. These forensics approaches are divided into
three categories based on the various kinds of traces they can be used to track—that is, traces left in image
acquisition, traces left in image storage, and traces left in image editing. For each category, the forensics
scenario, the underlying rationale, and state-of-the-art methodologies are elaborated. Moreover, the
major limitations of the current image forensics approaches are discussed in order to point out some
possible research directions or focuses in these areas.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the past decade, digital images have become more and more
popular in our daily life. Compared with traditional text content,
images are more intuitive and can convey much more information.
Despite these benefits, the easy accessibility of digital images has
resulted in significant security problems—that is, how to examine
the authenticity of digital images and how to detect malicious
modification. With advanced image processing software, it is
becoming easier and easier to manipulate images without leaving
visually noticeable traces, making the aforementioned problems
more challenging [1].

To authenticate image contents and detect image forgeries
accurately and robustly, researchers have proposed various
approaches in digital image forensics. Generally speaking, there
are two major categories of digital image forensics approaches:
active approaches and passive approaches [2]. Active forensics
approaches usually involve designing various kinds of watermarks
or fingerprints of the image content and embedding them into the
digital image. In the authentication stage, the former embedded
watermarks or fingerprints are extracted and examined to deter-
mine whether the original image has been tampered with and, if
so, where the tampered location is [3]. These active approaches
can detect digital image tampering accurately; however, they have
not been widely used because it is not possible to require all the
digital images on the Internet to be watermarked before distribu-
tion. Hence, passive forensics approaches have become a more
popular choice. These approaches detect digital image forgeries
by analyzing specific inherent clues or patterns that occur during
the creation/modification stage of digital images [4]. Compared
with active forensics approaches, passive approaches do not rely
on any prior or preset information; thus, they can have a broader
application in image forensics.

For passive digital image forensics, various kinds of traces can
be exploited to differentiate tampered images from natural ones
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[5]. In this paper, we have categorized these traces into three
groups: traces left in image acquisition, traces left in image storage,
and traces left in image editing. For each kind of traces, we will
briefly review the corresponding passive digital image forensics
approaches by clarifying the following issues:
� What are these traces and how do they form?
� What are the relevant recent and state-of-the-art approaches in
image forensics?

� Why can these approaches detect these particular traces?
The paper is organized as follows. In Sections 2–4, we introduce

various passive digital image forensics approaches, respectively:
detecting the traces in image acquisition, the traces in image
storage, and the traces in image editing. Section 5 concludes with
a discussion of the major limitations of current techniques, and
presents some possible future directions.
2. Traces left in image acquisition

When a digital image is captured, several processing steps are
performed before storage (Fig. 1). Before entering the imaging
device, the natural light usually goes through a series of lenses.
The imaging device then conveys it to the color filter array (CFA),
where a specific color mosaic is performed that only permits a
certain component of the light to pass through a specific area. In
most digital cameras, only one main color (red, green, or blue, or
RGB) is allowed for each pixel. After CFA filtering, the light reaches
the imaging sensor, which is the crucial part of the digital camera.
At present, there are two widely used sensors: the charge-coupled
device (CCD) and the complementary metal-oxide semiconductor
(CMOS). A number of photo detectors are contained in the imaging
sensor and each of their output is related to a pixel of the image. In
each detector, the filtered light is transformed into a corresponding
voltage; thus, the output of the sensor is a mosaic of RGB pixels
with various intensity values. In order to obtain the integrated
color information for every pixel in the image, a demosaicing
procedure has been adopted. An interpolation process has been
performed on all the color channels; thus, the missing color
components can be estimated.

Each of the above stages will introduce specific imperfections or
patterns into the final image; these can be adopted as useful clues
in image source identification and tampering detection. The
following subsections present a brief introduction to the traces left
by the lens, sensor, and CFA interpolation; typical image forensics
approaches using these traces; and the state-of-the-art forensics
approaches used in this case.
2.1. Traces left by acquisition artifacts

Owing to the design and manufacturing process, distortions or
aberrations will be introduced by the lens into the captured
images. There are two kinds of common distortions in digital
cameras: chromatic aberration (CA) and spherical aberration. The
former distortion will appear when the lenses cannot focus colors
Fig. 1. Flowchart of the digital image acquisition procedure.
with different wavelengths to the same convergence position on
the sensor. The latter aberration will appear when lights passing
through the lens do not converge at the focal point.

Sensor noise is another important acquisition characteristic.
Among the various kinds of sensor noises, noise caused by the
photo response non-uniformity (PRNU) is of the greatest impor-
tance. Various kinds of digital image forensics approaches have
been proposed based on the PRNU noise; these approaches cover
the applications of source identification, processing history
recovery, image forgery detection, and more. The PRNU is a
distinguishing characteristic that is related to each imaging sensor.
Hence, by analyzing the PRNU in each captured image, the traces of
the capturing device can be obtained.

Another aspect that cannot be ignored is the demosaicing of
artifacts in the CFA. In order to estimate the corresponding values
of each pixel in the image, an interpolation procedure has been
applied to the three color channels. The interpolation process
inevitably introduces certain correlations among the pixels, and
such correlations can be adopted as an intrinsic ‘‘fingerprint” of
the capturing device. By analyzing the demosaicing patterns, traces
of the capturing devices can be obtained.

2.2. Image forensics using acquisition artifacts

2.2.1. Image forensics based on sensor noise
Using the aberrations produced by the camera lens, we can

relate an image to a specific device or examine whether an image
has been tampered. For example, radial distortion is usually
observed in an image, as the straight lines of an object appear to
be curved. In order to deal with radial distortion, digital camera
manufacturers usually adopt various methods to compensate for
the distortion; these methods produce different artifacts accord-
ingly. Hence, by analyzing such artifacts, the camera manufacturer
and even the camera model can be identified.

Sensor pattern noise is commonly used in image forensics. For
the image I, the pattern noise can be formulated as follows:

R ¼ I � FðIÞ ¼ I � P þu ð1Þ
where R is the overall residual, which can be obtained from the
original image by deducting the counterpart after passing the image
through a de-noising filter F; P is the PRNU factor; and u is the
summation of all the other kinds of noises in the image.

Assuming that we have N images captured by the same cam-
era—that is, images I1 to IN—the corresponding residual Rk can be
calculated using Eq. (1). The PRNU factor P can be estimated fol-
lowing the maximum likelihood criterion and is formulated as
follows:

P ¼
PN

k¼1RkIkPN
k¼1ðIkÞ2

ð2Þ

In camera identification, supposing that there areM devices, the
PRNU factor should be calculated M times with a specific Pi value
being recorded for each device (i = 1, 2, . . ., M). In the test stage,
the residual term is first calculated using Eq. (1) as Rt ¼ It � FðItÞ
for the test image It. Then the correlation between the PRNU factors
and this residual, Rt, is computed as follows:

~ni ¼ ItPi � Rt ð3Þ
where � denotes normalized correlation. The capturing device is
identified as the one with maximum ~ni.

2.2.2. Image forensics based on CFA patterns
The underlying rationale of the forensics approaches that are

based on CFA artifacts is that the original image will have specific
CFA artifacts, whereas the tampered region will probably have a
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different kind of artifact. Hence, the CFA artifacts are computed for
each block in the image that is being investigated, with different
CFA patterns indicating the existence and location of forgery. In
addition, since a different demosaicing algorithm introduces differ-
ent correlations between neighboring pixels in a specific color
channel, there are two major directions in image forensics based
on CFA patterns. The first direction aims to predict the interpola-
tion parameters and identify the type of capturing device, while
the second aims to examine the demosaicing traces so as to locate
the region that has potentially been tampered with.

2.3. State-of-the-art acquisition artifacts detection approaches

2.3.1. Source identification based on lens aberrations
As discussed in Section 2.1, different cameras have different

kinds of lens aberrations, so lens aberrations can be adopted as a
unique ‘‘fingerprint” in source identification. Choi et al. [6] pro-
posed a pioneering work in this area: Considering the characteris-
tics of the radial distortion that forces straight lines to become
curved, they proposed two kinds of features, based on the pixel
intensities and the distortion measurements. Choi et al. [6] then
performed source identification as a classification procedure and
achieved a 4% detection accuracy gain compared with approaches
that only use image intensities.

2.3.2. Tampering detection based on lens artifacts
The basic idea behind using lens artifacts to detect image-

splicing forgery is that the original image and the inserted image
patch are probably captured using different devices; thus, detect-
ing and locating image regions with different lens artifacts may
identify image forgery. Yerushalmy and Hel-Or [7] proposed a
new type of lens artifact, which is referred to as the ‘‘purple fring-
ing aberration” (PFA); they also presented a corresponding extrac-
tion method. The PFA directions are adopted as unique
‘‘fingerprints” to determine whether there is any inconsistency in
the image being tested. The algorithm achieved good performance
in both image forgery detection and tampering detection.

2.3.3. Source identification based on sensor pattern noise
Owing to deficiencies in the sensor manufacturing process, dif-

ferent pixels will have dissimilar light sensitivities; therefore, the
sensor pattern noise, and especially the PRNU, can be used to dif-
ferentiate various kinds of sensors and camera types. Lukas et al.
[8] proposed a source identification approach based on the PRNU
that can identify nine camera models. Kulkarni and Mane [9]
noticed that an estimation of the sensor noise may not be very
accurate in the edge region, and proposed a preprocessing step
before feature extraction. Two edge detectors, the Canny and
Laplace operators, were adopted to detect the edge regions; these
regions are then removed for further processing. After calculating
the sensor noise by thresholding, a number of statistical features
were extracted from the discrete wavelet transform (DWT) domain
in the form of the gray-level co-occurrence matrix (GLCM). Finally,
the k-nearest neighbor (k-NN) is adopted as the classifier. Consid-
ering the applications for camera identification in mobile phones,
Sandoval Orozco et al. [10] proposed a specific approach based
on sensor imperfections. Their features were also extracted from
the wavelet domain, and this approach achieved good results in
digital camera identification in mobile phones.

2.3.4. Tampering detection based on sensor fingerprint inconsistencies
Similar to the lens artifacts, the sensor noise can be used to

detect image forgery. The underlying idea is that there will be
inconsistencies in the sensor noise/fingerprints in the tampered
region, allowing a suspicious tampered region to be detected.
Fridrich [11] proposed an image-tampering detection approach
based on the PRNU information. A statistical model was built to
describe the PRNU factor. The PRNU factor of the image being
tested was extracted and used to identify the capturing device.
The experimental results showed that this approach can achieve
almost 100% accuracy for 100 different types of cameras.

2.3.5. Source identification based on CFA artifacts
As mentioned earlier, the CFA and the demosaicing process vary

among various cameras; Gao et al. [12] proposed a source identifi-
cation method based on this information. A 69 dimensional feature
was designed to describe the abovementioned artifacts. The exper-
iments were carried out on the Dresden Image Database, and a
very high detection accuracy of 99.88% was achieved in differenti-
ating seven camera models.

2.3.6. Tampering detection based on CFA artifacts
The basic idea of using CFA artifacts in tampering detection is

straightforward: The tampered region will exhibit different CFA/
demosaicing artifacts than those of the original image. Prasad
[13] proposed a feature to describe the demosaicing artifacts in
images. If an abnormal region is present (i.e., one without the
original artifacts or having different artifacts), it is regarded as a
tampered region. Katre and Chandel [14] proposed an approach
that can both detect image forgeries and locate the tampered
region. The artifacts caused by demosaicing were modeled, which
helped to reveal the image forgery. Their approach achieved good
performance for uncompressed images; however, the question of
how to deal with Joint Photographic Experts Group (JPEG)
compression remained a challenging one.
3. Traces left in image storage

JPEG is the most widely used format for image transmission and
storage. Since it is a lossy compression standard, JPEG will inevita-
bly introduce certain compression patterns during each image
storage. By analyzing these patterns, it is possible to deduce impor-
tant forensic cues, such as ① how many times the image has been
compressed and ② whether all the regions in the image have been
compressed the same number of times. The following subsections
present a brief introduction to the patterns left by JPEG compres-
sion, typical scenarios in JPEG compressed image forensics, and
state-of-the-art forensics approaches in this area.

3.1. Patterns left by JPEG compression

A standard JPEG compression procedure for grayscale images
runs as follows (note that this procedure can be extended to color
images by performing a similar approach in each channel of the
YCbCr color space): A non-overlapping 8 � 8 block division is per-
formed on an original image. For each block, a two-dimensional
discrete cosine transform (2D-DCT) is applied on the grayscale val-
ues to transform all the pixels to the frequency domain. Next, the
amplitudes of the frequency components are quantized by a preset
quantization table. Fig. 2 shows a typical quantization table with a
quality factor of 50, where larger quality factors represent a higher
image quality and lower compression ratio. Finally, an entropy
coding technique (e.g., Huffman coding) is adopted to turn the
quantized frequency amplitude into a binary sequence.

The JPEG compression will introduce three kinds of bias to the
original image: the quantization error, truncation error, and round-
ing error. The quantization error is caused by the quantization pro-
cess in the frequency domain. After quantization, the original value
of a specific DCT component will be represented by the closest
integer multiples of the corresponding quantization step. For
example, given an original direct current (DC) value of 86 and a



Fig. 2. A quantization table with a quality factor of 50.
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quantization step of 16 (as shown in Fig. 2), the DC value will be
changed to 80 after quantization and the difference is denoted as
the quantization error (i.e., 86 – 80 = 6). The truncation error and
rounding error are introduced in the inverse discrete cosine trans-
form (IDCT) transform. As we know that the grayscale value should
be an integer ranging from 0 to 255, any value greater than 255 or
less than 0 will be truncated to 255 or 0, correspondingly, which
leads to the truncation error. On the other hand, most values after
IDCT are not integers, so a rounding process must be performed,
which leads to rounding errors. Generally speaking, the quantiza-
tion error is much greater than the other two errors, especially
when the quality factor is medium or low (< 75). By analyzing
the quantization error, some clues about JPEG compression can
be derived.
3.2. Image-tampering detection using clues from JPEG compression

Consider a simple image-tampering scenario. We crop the small
Patch I from Image B and insert it into Image A to generate a com-
posite Image C (Fig. 3). If all the images—A, B, and C—are stored
using JPEG compression, the following issues can be observed.
3.2.1. Aligned double JPEG compression
In Image C, all the regions except Patch I are compressed twice

(during the storing of Image A and the storing of Image C), whereas
Patch I is compressed once. Note that although Image B has also
been JPEG compressed, the 8 � 8 block division structure of Image
B is very likely (with a probability of 63/64) to be different from
that of Image A with regards to Patch I. Thus, Patch I in Image C
is compressed only once according to the 8 � 8 block division
structure of Image C (which is the same as that of Image A). Hence,
the inserted Patch I can be located by examining the aligned dou-
ble JPEG compression effects in all the regions. Here, the term
Fig. 3. An illustration of copy-paste image tampering.
‘‘aligned” refers to the first and second JPEG compression using
the same 8 � 8 block division structure.

3.2.2. Shifted (non-aligned) double JPEG (SDJPEG) compression
The image in Patch I is focused on in this part. The image in

Patch I is first compressed when storing Image B using a specific
block division structure; it is then compressed again during the
storing of Image C, using another structure. Double JPEG compres-
sion with different block division structures is referred to as a
‘‘shifted” or ‘‘non-aligned” case. By examining all the regions in
Image C, the inserted Patch I can be located based on the SDJPEG
compression effects.

3.3. State-of-the-art double JPEG compression detection approaches

For most tampered images, at least two JPEG compressions have
been applied to the original image. Hence, double JPEG compres-
sion detection is a crucial part in digital image forensics. The rep-
resentative aligned double JPEG compression detection
approaches can be found in Refs. [15–21]. One of the earliest works
was proposed by Lukas and Fridrich [15], who noticed that double
JPEG compression would generate two peaks in the DCT histogram;
this phenomenon was adopted as a clue to detect double JPEG
compressed regions. Fu et al. [16] proposed a double JPEG com-
pression detection approach based on the generalized Benford’s
law. They assumed that the first digits of the DCT coefficients after
JPEG compression form a distribution that follows the generalized
Benford’s law; thus, any image region violating this assumption is
determined to be a double JPEG compressed region. Pevny and
Fridrich [17] extracted a number of low-frequency DCT coefficient
histograms as distinguishing features and used the support vector
machine (SVM) as the classifier. Farid [18] stated that if the image
was double JPEG compressed, recompression with the same qual-
ity factor would cause the minimum reconstruction error. He
referred to such a local minimum as a ‘‘JPEG ghost,” and tried to
detect double compression by searching for JPEG ghosts. Lin et al.
[19] proposed a tampered region-locating algorithm based on
double JPEG compression detection. The distribution of DCT
coefficients after single JPEG compression was assumed to follow
the Laplace distribution; the distribution after double JPEG com-
pression can then be derived accordingly. By using an expectation
maximization (EM) optimization algorithm, each region was
assigned a probability of being doubly compressed. A graph cut
algorithm was then adopted to avoid false alarms. This algorithm
usually works well for double compression with different quality
factors. However, when two compressions use the same quantiza-
tion table, most of the existing approaches cannot achieve a high
detection accuracy. In view of this, Huang et al. [20] designed an
algorithm only for detecting double JPEG compression with the
same quality factor. A random perturbation strategy was adopted
based on the fact that the differences between the first and second
compressions are much greater than those between the second and
third compressions. In a recent work, Yang et al. [21] extended the
idea in Ref. [20] and comprehensively analyzed the error blocks in
JPEG compression. The rounding errors and truncation errors were
analyzed, and a set of features describing the differences between
single and double JPEG compressions was extracted. By using the
SVM as the classifier, their algorithm [21] can accurately detect
double compression with the same quality factor when the quality
factor is relatively high.

When the original image (i.e., Image A in Fig. 3) is uncom-
pressed, aligned double JPEG compression effects will not exist in
the composite image (i.e., in Image C in Fig. 3). In order to detect
image forgeries in such a case, the researchers try to investigate
the SDJPEG compression effects [22–27]. Luo et al. [22] detected
SDJPEG compression effects by introducing a specific feature called



Fig. 4. The light source directions of the two people in this image are different,
which may be evidence of forgery [28].
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the blocking artifact characteristics matrix (BACM). For single JPEG
compressed images, it is observed that the corresponding BACMs
are symmetric, whereas the BACMs for SDJPEG compressed images
are no longer symmetric. However, the BACM feature is related to
the image content to some extent; thus, different image contents
may lead to different kinds of BACM features, which may degrade
the double JPEG compression detection performance. In order to
solve the content-related problem, an extended BACM feature
was proposed by Chen and Hsu [23] by considering the inter-
block correlation. Qu et al. [24] proposed a convolutive mixing
model for SDJPEG compression, and solved it using blind signal
separation. They analyzed the independent value map (IVM) to
examine whether the image had undergone SDJPEG compression,
with the assumption that SDJPEG compression will break the sym-
metry of the IVM. Bianchi and Piva [25] tried to disclose SDJPEG
compressed traces from the DCT coefficient histograms. A com-
plete search was performed to examine each region with a specific
size in order to determine whether it was SDJPEG compressed or
not. When the searching region matches the block division of the
first JPEG compression, an integer periodicity pattern can be
observed in its DCT coefficient histogram. Bianchi and Piva [26]
also proposed a statistical model for the DCT coefficient distribu-
tions caused by SDJPEG compression. They simulated the SDJPEG
compression by adding a zero-mean Gaussian noise to each DCT
coefficient; they also provided a variance estimation method to
approximate the noise variance. Recently, Wang et al. [27]
extended the idea in Ref. [26] and provided a complete theoretical
proof on how the SDJPEG compression affects the DCT coefficient
distributions.

The major limitations of the current double JPEG compression
detection algorithm are threefold:

(1) Most techniques are based on statistical features or models.
When the tampered region is small enough (i.e., smaller than 64 �
64), most techniques cannot provide accurate results, since the data
for constructing the statistical features (models) are quite limited.

(2) Most techniques can achieve good results when the first
quantization table is known or can be accurately estimated. How-
ever, such an assumption cannot be easily achieved. Due to the
error propagation, the overall detection accuracy will decrease to
some extent during the exhaustive search for the first quantization
table.

(3) For SDJPEG compression detection, when the quality factor
of the second quantization is much less than that of the first quan-
tization, most state-of-the-art detection approaches show a perfor-
mance that is similar to random guessing.

4. Traces left in image editing

4.1. Inconsistency in lighting

Copy-paste image tampering is the most common method of
creating an image forgery. These forgeries are usually deceptive
Fig. 5. In different images, the light so
to the human eye; however, they may have some inconsistencies
in lighting, shadows, perspective, and so forth, which can be
detected by proper analysis. Fig. 4 [28] shows a well-known case
of lighting inconsistencies. When a picture is captured, the objects
in the scene are illuminated by a light source coming from a certain
direction (Fig. 5 [28]). If two objects originally come from different
images, it is unlikely that their light sources will be similar in
direction and distance. The following subsections present a brief
introduction to image forgery detection by analyzing lighting
consistencies.

4.1.1. Lighting traces
When an image is captured, the objects captured in the scene

are illuminated by a light source. This light source will leave traces
on the objects, such as intensity differences on the surface, and
shadows. Hence, the light direction can be inferred from these
traces. If the objects in an image are illuminated by different light
sources, these objects are very unlikely to belong to the same orig-
inal scene—which indicates forgery.

4.1.2. Image-tampering detection using a lighting pattern
The lighting environment in the real world is complex. Light

sources are three dimensional (3D), and sometimes there are
multiple light sources. Hence, assumptions are made to simplify
the problem: the Lambertian assumption of the surface of interest,
the constant assumption of the object’s reflectance, and the
assumption that the light source is located infinitely far away.
With these assumptions, Johnson and Farid [28] described the
image intensity, Is, as follows:

Isðx; yÞ ¼ RfðNðx; yÞ � LÞ þ C ð4Þ
where Rf is the object’s constant reflectance value, L is the light
source direction, Nðx; yÞ is the surface normal direction at the
urce directions are different [28].
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coordinate ðx; yÞ, and C is the constant ambient light. Moreover, Rf
can be regarded as a unit value when only the light direction is
required for estimation. Given knowledge of 3D surface normals
from at least p distinct points (p P 4) on a surface with the same
reflectance, the least-squared estimation is adopted to calculate
the light direction, which is formulated as follows:

EðL;CÞ ¼ M

Lx
Ly
Lz
C

0
BBB@

1
CCCA�

Isðx1; y1Þ
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����������

����������

����������
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where kk represents the vector norm, L is the light source direction
containing three components (Lx, Ly, and Lz), and

M ¼
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. ..
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. ..
.
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0
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ð6Þ

where Nx, Ny, and Nz are the three components of the surface normal
direction. Setting the partial derivative at zero, the least-squared
estimate can be calculated as follows:

t ¼ ðMTMÞ�1
MTb ð7Þ

However, with only a single image and without knowing the
geometry of the objects in the scene, it is unlikely that the object
surface normal Nðx; yÞ can be obtained. A good solution is to sim-
plify a 3D scene to a 2D one, which means that we only need to
estimate two components, (Lx, Ly), of the light source direction
from a digital image.

In some scenes, the simplifying assumptions are too strict, such
that forgeries cannot be detected. In these cases, we can relax some
simplifying assumptions. For example, we can relax the constant
reflectance assumption; different light source directions on each
patch of the surface must then be estimated. Moreover, when the
light source is local, the assumption that the light source is infi-
nitely far away is invalid. In that case, one more assumption must
be added: that the light source direction is constant for a local
patch.

4.1.3. State-of-the-art lighting inconsistency detection approaches
Lighting traces are quite complex in the real world. For indoor

scenes, there may be multiple local light sources. For outdoor
scenes, there is very likely a one-point light source from infinitely
far away. In some scenes, we cannot calculate the 3D components
of the light direction due to unknown geometry. Most of the detec-
tion approaches are based on particular scenes or have some
defects. Johnson and Farid [28] proposed one of the earliest
attempts at detection using lighting inconsistencies. Although this
method had some difficulties in calculating the object surface nor-
mal in many cases, it was observed that for images containing
human faces, the light source in the scene can be estimated from
the highlights on human eyes. Johnson and Farid [29] then esti-
mated the light direction from this highlight based on a 3D model
of a human eye, and proposed a lower-dimensional model in Ref.
[30] to deal with a complex lighting environment. Kee and Farid
[31] further built a 3D head model to improve the estimation per-
formance for a complex lighting environment. Nillius and Eklundh
[32] presented an automatic light source direction estimation algo-
rithm from a single image. The algorithm in Ref. [32] required at
least one occluding object contour with isotropic surface reflec-
tance in the image—a requirement that can be easily satisfied in
many images with various contents. In the algorithm, the occlud-
ing contours were first extracted based on the color and edge infor-
mation. A shading model was then adopted to estimate the light
source direction for each contour, and a Bayesian network was
designed to fuse all the estimation results and output the most
likely estimation. It is worth noting that in Ref. [32], the shadows
of the objects could also be used to detect forgery. Koenderink
et al. [33] modeled the illumination process as a parallel light beam
from random directions projecting on random Gaussian surfaces,
and proposed an illumination direction estimation method accord-
ingly. Zhang et al. [34] adopted the planar homology and shadow
matte to describe the color distribution/characteristics and
relationship of the shadows in the image. A framework based on
photometry and geometry of the image shadow was proposed to
detect image forgeries. Fan et al. [35] designed a straightforward
counter-forensics strategy to outdo the 2D lighting consistency-
based forensics approaches; this strategy disposed the
shortcomings of the existing approaches in this area and provided
new challenges for future research. Moreover, it was shown that
lighting traces are more effective for outdoor scenes due to the
simple lighting environment.
4.2. Local filtering traces

4.2.1. Median filtering detection
Median filtering (MF) is a common image post-processing

method to filter out image noise. With its nonlinear property, it
also can be used in image forgeries to remove specific modification
traces. The MF result is obtained by the median value of a small
window surrounding a specific pixel. Generally speaking, the
square window size is set to odd values, such as 3 � 3 or 5 � 5.
Since the MF takes the median value as the filtered result, it usually
generates many constant or nearly constant patches in the filtered
image; these patches become intrinsic footprints and make the MF
procedure traceable and detectable.

The general form of a 2D median filter is given as follows:

yi ¼ medianðxiþr;jþcÞ; r; c 2 ½�z=2; z=2� ð8Þ

where yi is the output of the median filter on a pixel (i, j) with a
squared window of the size [z, z].

The nonlinear nature of MF makes it difficult to build up an
explicit expression describing the relationship between its input
and output. However, Bovik et al. [36] demonstrated that MF has
a good property of edge preservation. In addition, constant or
nearly constant image patches are usually found in an image after
MF; this is referred to as the streaking artifact [37], as shown in
Fig. 6. Kirchner and Fridrich [38] first tried to exploit the streaking
artifact of MF images and proposed a pair of MF detectors using
this artifact. The histogram in the first-order difference image
was analyzed to examine the streaking artifacts, and the approach
showed good results for uncompressed images. In order to detect
MF in JPEG compressed images, the subtractive pixel adjacency
matrix (SPAM) features [38], which show good results in steganal-
ysis, were adopted for MF detection. However, since the SPAM is a
complex statistical model, the detection performance will degrade
when the number of pixels in the image region is reduced to a
relatively small value (e.g., 64 or 128). Similarly, Cao et al. [39]
proposed an MF detection algorithm based on the streaking
artifacts. After computing the difference images of the texture
region in both the horizontal and vertical directions, the
probabilities of zero values were recorded. Moreover, the
algorithm developed by Cao et al. [39] can differentiate MF from
other local image processes such as rescaling, Gaussian low-pass
filtering, and averaging filtering. Yuan [40] observed that MF
results have a local dependency artifact because the local filtering
windows of adjacent pixels are overlapped with each other during



Fig. 7. Overshoot artifacts of USM sharpening [46].

Fig. 6. Pixel distribution (a) before and (b) after MF.
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MF, and a number of pixels are shared between adjacent local
windows. Based on this observation, 44 features measuring the
intrinsic relationships among the adjacent pixels were proposed
for MF detection, as what is referred to as the median filtering
feature (MFF). The MFF can detect MF very accurately for uncom-
pressed images and can achieve similar results when compared
with the SPAM feature in JPEG compressed images. Moreover, for
JPEG compressed images with a low quality factor, the MFF usually
outperformed the SPAM feature.

The major drawback of using streaking artifacts for MF detec-
tion is that these approaches are not robust against certain types
of image post-processing steps, such as JPEG compression. Hence,
other kinds of MF traces should be exploited. Chen and Ni [41]
observed that images after MF show different image characteristics
in the edge region, compared with the original images. Such char-
acteristics are represented in the specific correlation between
neighboring pixels and the relationship between image noise and
edges [41]. Taking the above characteristics into consideration,
the edge-based prediction matrix (EBPM) feature was proposed
for MF detection; this feature is extracted from various edge
regions in the image, and the SVM is adopted for classification.
Compared with previous methods, the EBPM showed better perfor-
mance in distinguishing MF from other filtering processes such as
Gaussian low-pass filtering and averaging filtering. Kang et al. [42]
adopted the median filter residual (MFR) as evidence to detect MF.
The residual was defined as the difference between the image and
its median filtered output. The authors pointed out that when an
image is median filtered once more, the MFR will be reduced; they
then proposed an MF detection approach based on this observa-
tion. An auto-regressive (AR) model was employed to construct
an MF detection feature set based on the MFR. Compared with
SPAM feature and MFF, the MFR feature has a lower dimension
(it is 10 dimensional) and achieves comparable detection results,
even when the quality factor of the JPEG compressed image is
low (e.g., 30). Chen et al. [43] exploited both the global information
and local information for MF detection. In the global sense, a num-
ber of cumulative distributions of various orders of the difference
images were adopted as global features. In the local sense, the cor-
relations between various neighboring pixel pairs were adopted as
local features. The final feature was constructed by concatenating
the global and local features, and had a dimensionality of 56. Their
approach is successful at detecting MF in low-resolution and JPEG
compressed images with low quality factors.

Some modern techniques, including the local texture descriptor
and deep learning, have recently been adopted for MF detection.
Zhang et al. [44] proposed a local texture descriptor, referred to
as the second-order local ternary pattern (LTP), for MF detection.
The proposed feature combined the merits of the LTP feature and
those of the local derivative pattern feature; thus, it can better
describe the local characteristics caused by MF. Moreover, kernel
principal component analysis (KPCA) was employed for feature
dimension reduction and discriminative feature extraction. Using
the approaches in Ref. [44], median filtered images can be detected
accurately and efficiently. Chen et al. [45] aimed to detect MF arti-
facts in a challenging small-sized image patch scenario. A convolu-
tional neural network (CNN) was designed for both feature
extraction and classification. The image patch is adopted as the
input of the network, and the detection result is the network out-
put. In Ref. [45], the features were learned automatically from
training samples, and no manual feature extraction procedure
was required. This approach showed significant performance
improvements in MF detection, especially when the image patch
is small.

4.2.2. Unsharp masking sharpening detection
Unsharp masking (USM) sharpening is a technique that is

widely used in daily life: It enhances edge contrast in order to
improve image quality. However, in many image forgeries, USM
sharpening can also be employed to cover the traces of image
manipulation to some extent. Hence, USM sharpening detection
has become a hot research topic in digital image forensics. The
USM sharpening process usually contains the following two steps:

Step 1: Perform Gaussian high-pass filtering.

Hðx; yÞ ¼ Iiðx; yÞ � Iiðx; yÞ � Gr ð9Þ
where H is the high pass filter; Ii is the original image; (x, y) repre-
sents the horizontal and vertical coordinates; and Gr stands for the
Gaussian high-pass filter, and r is the standard deviation (SD) of G,
which controls the sharpening range.

Step 2: Add the unsharpened mask to the original image.

Oðx; yÞ ¼ Iiðx; yÞ þ kHðx; yÞ ð10Þ
where O is the final image after sharpening and k is the scale coef-
ficient that can control the strength of the sharpening.

Fig. 7 [46] shows the change in grayscale values after USM
sharpening. The original edge is a side-plain edge. It is observed
in Fig. 7 that there are two jumps enlarging the edge effects in
the edge region. This phenomenon is defined as the overshoot arti-
fact, which is a significant clue for the USM sharpening procedure.
It is caused by the superposition of high-frequency signals.

In recent years, many researchers have proposed several
approaches to detect USM sharpening [46–49]. The edge-
modeling-based [47,48] and local-texture-based [46,49]
approaches are two widely used techniques in USM sharpening
detection. Cao et al. [47] first proposed the idea of USM sharpening
detection. They discovered the histogram aberration caused by
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sharpening, and built edge models to measure it. However, in their
later work [48], the method in Ref. [47] was proved to be effective
only when the image has a wide pixel value histogram. Cao et al.
[48] proposed another method for USM sharpening detection. First,
the edge position of the original image was detected. Next, the
overshoot strength around the edge was measured, and the aver-
age overshoot strength over the whole image was calculated.
Finally, a threshold was set for overshoot artifacts in order to deter-
mine whether an image has been USM sharpened. Although this
approach in Ref. [48] solves some of the shortcomings of the
method presented in Ref. [47], it is very sensitive to image noises.

Local-texture-based approaches apply different local textures in
edge regions. Local binary pattern (LBP) and edge perpendicular
binary coding (EPBC) [46] textures are two widely used local tex-
tures. Ding et al. [49] adopted LBP texture. They first located the
edge region using a Canny operator. They then applied LBP texture
around the edge pixel. The overall histogram of the whole image
was calculated and an SVM classifier was utilized to differentiate
the sharpened image from the original images. Experimental
results showed that the LBP-based approach outperforms the edge
modeling approaches. Later, Ding et al. [46] discovered that over-
shoot artifacts mainly appeared in the perpendicular direction of
the edge. Therefore, they proposed a novel texture—EPBC tex-
ture—for USM sharpening detection. Compared with LBP texture,
the EPBC texture feature uses a 1 � N rectangle window, which is
on the edge pixel and along the edge normal. A new binary coding
strategy was applied for the rectangle window. Compared with
other approaches, the EPBC-based approach has better detection
accuracy with efficiency. This approach is also robust against JPEG
compression and other noises, to some extent.

4.3. Detection of copy-move attacks

The aim of a copy-move attack is to deliberately forge or
remove one or more objects in the source image. For object cre-
ation, the new object is generated by copying a source object
and moving it to another position in the same image as shown
in Fig. 8. For object removal, the object region being removed
is replaced by some background patches in the same image. In
order to deceive the human eye, fundamental affine transforms
such as scaling, rotation, and so forth are usually applied before
pasting.

Considering the mechanism of the copy-move attack, it can be
concluded that in the tampered image, there is at least one pair
of regions in the object or background region with extremely
similar color, shape, and texture. By analyzing these similar image
patch pairs, a copy-move attack can be detected. Accuracy and
efficiency are two key issues in copy-move detection. Refs.
[50,51] are the pioneering works in copy-move detection. Fridrich
Fig. 8. A typical example of copy-move attack
et al. [50] discussed several major requirements of the copy-move
detection algorithm, including: ① allowing for an approximate
match of small image segments; and ② having few false alarms
and an acceptable processing time or complexity. They then pro-
posed a detection algorithm based on block matching. The image
investigated was first divided into a series of overlapping small
blocks, and specific features were extracted from each block. By
comparing the features, similar small blocks were detected; the
test image was regarded as an image forgery when there were
more than a preset number of block pairs gathering together in
the spatial domain. Popescu and Farid [51] adopted principle com-
ponent analysis (PCA) for feature extraction, and the eigenvalues of
the small block were adopted as its corresponding feature. The
major computation complexity of Refs. [50,51] is dominated by
the lexicographic sorting, which is OðF � N � logNÞ [51], where F
is the feature dimension and N is the number of pixels in the
image. However, the above approaches may not achieve good
results when the duplicated region is scaled or rotated greatly.

In order to deal with the problems caused by scaling and
rotation, Bayram et al. [52] exploited the properties of the
Fourier-Mellin transform, which is robust against translation,
rotation, and scaling. Furthermore, they adopted the practice of
counting bloom filters in order to reduce the computational
complexity caused by lexicographic sorting. The experimental
results showed that their features can resist a rotation of 10%
and a scaling of 10%. Li and Yu [53] extended the idea in Ref.
[52] and proposed the vector erosion filter to solve the problem
of vector counters. Their algorithm is shown to be able to detect
region duplication with a large rotation angle. Recently, Zandi
et al. [54] proposed an adaptive copy-move forgery detection
(CMFD) approach. Different thresholds were adopted for various
image contents. The adaptive threshold of a specific block was
determined by its SD; thus, the corresponding CMFD can detect
duplications in both smooth and textured regions. Christlein
et al. [55] performed a comprehensive evaluation of various
kinds of CMFD approaches. An image database containing 48
base images was adopted, and the copy-move forgeries were
carefully produced without leaving visually noticeable traces.
The results in Ref. [55] demonstrated that although keypoint-
based approaches are very efficient, the detection results will
be affected by low-contrast regions and repetitive objects [55].
On the other hand, block-based methods provide high detection
accuracies at the cost of higher computational complexity. Of all
the features, Zernike features are the recommended choice.

4.4. Resampling detection

Generally speaking, in many image-splicing scenarios, the splic-
ing image region usually undergoes a resizing and/or a rotation
. (a) Original image; (b) tampered image.
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procedure to cover the forgery traces and to make the final image
forgery appear more realistic. Moreover, in the resizing and rota-
tion procedure, the pixels in the modified image patch must be
resampled to fit the new sample lattice. Hence, resampling
detection can help to detect possible image forgeries and locate
suspicious splicing regions.

In 2005, Popescu and Farid [56] proposed their pioneer work in
resampling detection. They observed that for resampled signals,
there are strong correlations between neighboring/adjacent sam-
ples. An EM algorithm was employed to estimate the underlying
correlation parameters. With the above parameters, a probability
map can be generated to describe the probability of a specific pixel
to be correlated with its neighboring pixels. This approach can
provide high detection accuracy for uncompressed images,
although the detection performance will be degraded for JPEG
compressed images because the block discrete cosine transform
(BDCT) in JPEG compressed images leads to a specific kind of
resampling that may confuse the detector.

Gallagher [57] proposed a simple algorithm to detect two
widely used interpolation operators: the linear interpolation and
the cubic interpolation. He observed that after linear/cubic inter-
polation, images would have a periodic pattern in the second
derivative signal, and that the period of such a pattern can indicate
the interpolation factor. The experiments showed that the
approach in Ref. [57] can detect the zoom factor from 1.1 to 3.0
in increments of 0.1. Mahdian and Saic [58] extended this idea
and showed that interpolation will introduce a specific periodicity
when considering the covariance of the signal’s derivatives. How-
ever, the detection performance of the above approaches will be
degraded with medium or strong JPEG compressions.

In order to deal with JPEG compressed images, Kirchner and
Gloe [59] modified the algorithm in Ref. [56] by removing the arti-
facts caused by JPEG compression to some extent. Their results
demonstrated that the detection performance degrades greatly
when the post-compression is stronger than the pre-
compression. Moreover, upscaling is usually more detectable than
downscaling.

Vázquez-Padín et al. [60] recently proposed a simple approach
to detect upsampled images or image patches. The singular value
decomposition (SVD) approach was adopted to characterize the
linear dependencies of a resampled image. A specific measure
describing the degrees of saturated pixels was then proposed in
order to differentiate upsampled images from genuine images. This
approach showed good performance in detecting small resampled
patches.

4.5. Blind image-splicing detection

This kind of method attempts to detect various image-
tampering and manipulation procedures based on the fact that
such procedures will inevitably introduce certain artifacts that do
not exist in the original images. Generally speaking, these
approaches lead to a binary decision regarding whether a test
image is original or not. However, even if the image is examined
and determined to not be original, it is not possible to tell what
kind of tampering has been performed, or what region has been
tampered with. Nonetheless, blind image-tampering detection
algorithms can be used as a preprocessing step for many image
forensics systems in order to detect suspicious images without
determining the editing/manipulation tools that were used.

One of the first blind image-tampering detection methods was
proposed by Avcibas et al. [61], who aimed to detect image
manipulations caused by affine transformations (scaling and
rotation), brightness and contrast adjustments, and so forth.
Various image quality metrics were adopted as image features,
and linear regression was employed as the classifier. The forgery
detection was formulated as a two-class classification problem,
which allowed a feasible solution for most of the subsequent blind
detection approaches. The detection accuracy of this method was
reported as about 70%. Shi et al. [62] proposed an image-splicing
detection method based on a DCT coefficient model. They observed
that the distribution and correlation between neighboring BDCT
coefficients are useful to differentiate natural images from spliced
images. The Markov features extracted from the BDCT 2D arrays
were adopted as the discriminative features, and the SVM was
employed as the classifier. The experimental results showed that
this approach can achieve over 90% detection accuracy on the
Columbia Image Splicing Detection Evaluation Dataset [63]. Wang
et al. [64] stated that the chromatic information is more discrimi-
native than the grayscale information. They adopted the GLCM of
the edge map in a chromatic channel as the discriminative feature,
and employed SVM as the classifier. Similar to the Markov features
in Ref. [62], the GLCM features represent the second-order statis-
tics of the data and usually provide comparable results. He et al.
[65] extended the idea from Ref. [62] and extracted Markov
features in both the DCT and DWT domains. An SVMwith recursive
feature elimination (SVM-RFE) was employed to extract highly
discriminative features and provide higher detection accuracy. This
approach also achieved high detection accuracy in the Columbia
Image Splicing Detection Evaluation Dataset [63]. Recently, Zhao
et al. [66] proposed a new blind image-splicing detection method.
In contrast to the traditional causal Markov features [62,64,65],
they employed a 2D non-causal Markov model to describe the
underlying characteristics of the natural and spliced images in both
the DCT and DWT domains. The proposed non-causal model
provided more information and better modeled the 2D image. The
model parameters were regarded as the features, and SVM was
adopted as the classifier. The experimental results revealed their
detection accuracies to be above 90% in the Columbia Image Splicing
Detection Evaluation Dataset, which demonstrated the feasibility
of the blind detection approaches in image-splicing detection.

5. Conclusion and future work

Owing to various kinds of traces in image acquisition, image
storage, and image editing stages, digital image forgeries can be
detected without any prior information or knowledge. Among
the various kinds of passive digital image forensics approaches,
machine-learning-based techniques play an important role, in
which forgery detection is formulated as a two-class (i.e., natural
image or composite image) classification problem. Various features
that can effectively disclose specific underlying traces have been
proposed in digital image forensics.

The most critical issue and challenging problem in digital image
forensics stem from the discriminative power and generalization
ability of the extracted features. On the one hand, the extracted
features should be sensitive to specific forgery operations and be
robust against variations caused by different image contents. In
most cases, these two requirements conflict with each other, leav-
ing the question of how to design a highly discriminative, content-
adaptive image forensics approach as an unsolved problem. On the
other hand, most of the current features are handcrafted or hand-
designed features that are usually based on certain assumptions or
on a specific simplified model of the forgery procedure. However,
due to the complexity in real images that are caused by variations
in image content, image manipulation techniques, and so forth,
handcrafted features have difficulty handling most forgery cases
effectively and comprehensively.

With the development of sophisticated artificial intelligence
techniques, deep learning suggests a promising solution for digital
image forensics. In many deep learning structures, such as the CNN
and the deep residual network, features are automatically learned
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from training samples rather than being manually designed. With
sufficient training samples, deep-learning-based approaches can
provide a more comprehensive description for specific forgery
operations, compared with traditional approaches. Recent deep-
learning-based approaches have shown great performance
improvement in digital image forensics applications such as MF
detection. However, thus far, deep-learning-based approaches
have not shown as much performance gain in digital image foren-
sics as they have in image recognition and understanding. This is
because the current network structures are being learned from
structures that are adopted in image recognition; these structures
are more or less related to image content, which leads to perfor-
mance degradation in many digital image forensics applications.
As a result, although deep-learning-based approaches are promis-
ing, they are not yet mature in digital image forensics; a consider-
able amount of work remains to be done in this area [67–71].
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