Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Mechanical Engineering >> 2014, Volume 9, Issue 1 doi: 10.1007/s11465-014-0287-9

Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

1. Department of Mechanical Engineering, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra.

2. Department of Mechanical Engineering, National Institute of Technolo- gy, Kurukshetra.

3. Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak

Available online: 2014-05-16

Next Previous


The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi-objective optimization problem is formulated. Non-dominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

Related Research