Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Mechanical Engineering >> 2021, Volume 16, Issue 4 doi: 10.1007/s11465-021-0645-3

Group-based multiple pipe routing method for aero-engine focusing on parallel layout

Available online: 2021-12-15

Next Previous

Abstract

External pipe routing for aero-engine in limited three-dimensional space is a typical nondeterministic polynomial hard problem, where the parallel layout of pipes plays an important role in improving the utilization of layout space, facilitating pipe assembly, and maintenance. This paper presents an automatic multiple pipe routing method for aero-engine that focuses on parallel layout. The compressed visibility graph construction algorithm is proposed first to determine rapidly the rough path and interference relationship of the pipes to be routed. Based on these rough paths, the information of pipe grouping and sequencing are obtained according to the difference degree and interference degree, respectively. Subsequently, a coevolutionary improved differential evolution algorithm, which adopts the coevolutionary strategy, is used to solve multiple pipe layout optimization problem. By using this algorithm, pipes in the same group share the layout space information with one another, and the optimal layout solution of pipes in this group can be obtained in the same evolutionary progress. Furthermore, to eliminate the minor angle deviation of parallel pipes that would cause assembly stress in actual assembly, an accurate parallelization processing method based on the simulated annealing algorithm is proposed. Finally, the simulation results on an aero-engine demonstrate the feasibility and effectiveness of the proposed method.

Related Research