Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Mechanical Engineering >> 2022, Volume 17, Issue 2 doi: 10.1007/s11465-022-0678-2

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

Available online: 2021-09-07

Next Previous


Owing to their inherent great flexibility, good compliance, excellent adaptability, and safe interactivity, soft robots have shown great application potential. The advantages of light weight, high efficiency, non-polluting characteristic, and environmental adaptability provide pneumatic soft robots an important position in the field of soft robots. In this paper, a soft robot with 10 soft modules, comprising three uniformly distributed endoskeleton pneumatic artificial muscles, was developed. The robot can achieve flexible motion in 3D space. A novel kinematic modeling method for variable-curvature soft robots based on the minimum energy method was investigated, which can accurately and efficiently analyze forward and inverse kinematics. Experiments show that the robot can be controlled to move to the desired position based on the proposed model. The prototype and modeling method can provide a new perspective for soft robot design, modeling, and control.

Related Research