Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Medicine >> 2009, Volume 3, Issue 2 doi: 10.1007/s11684-009-0032-7

Cloning of human XAF1 gene promoter and assay of its transcription activity in a variety of cell lines

Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Available online: 2009-06-05

Next Previous

Abstract

To investigate the regulation of tumor suppressor XAF1 gene expression in digestive system cancers, we studied XAF1 gene promoter transcription activity and mRNA level in digestive system cancer cell lines (human hepatoma cell line HepG2, human colon cancer cell line LoVo, and human gastric cancer cell line AGS) and nontumor cell lines (human embryonic liver cell line L02 (L02 cells) and human embryonic kidney 293 cells [HEK293 cells]) as controls. 1395-bp-promoter fragment of XAF1 gene was amplified by polymerase chain reaction (PCR) and cloned into pGL3-basic vector and pEGFP-1 vector to assay its promoter transcription activity. The plasmids were transfected into a variety of cell lines by lipofectamine 2000. The promoter transcription activity was determined by dual-luciferase report assay, and enhanced green fluorescent protein (EGFP)-positive cells were detected by fluorescence microscope. The expression of XAF1 mRNA in HEK293 and L02 were significantly higher than that in any of the three digestive system cancer cell lines. The dual-luciferase reporter assay showed that the promoter transcription activity in digestive system tumor cell lines transfected with pGL3-XAF1p promoter was apparently lower than that of both HEK293 and L02 cells. Expression of green fluorescent protein (GFP) under the control of XAF1 promoter in the three digestive system cancer cell lines was lower than that of both HEK293 and L02 cells. The activities of pGL3-XAF1p in the three digestive system cancer cell lines after treatment with heat stress were significantly lower than those in the unstressed cells. The results suggested that remarkably down-regulated XAF1 mRNA expression in digestive system cancer cell lines may be due to loss of transcription activity of XAF1 promoter.

Related Research