• Home
  • Journals
  • Focus
  • Conferences
  • Researchers
  • Sign in

Outline

  • Abstract
  • Keywords

Figures(5)

标签(1)

Table 1

其他(2)

PDF
Document

Frontiers of Medicine

2021, Volume 15,  Issue 1, Pages 79-90
    • PDF
    • collect

    Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition

    . School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.. Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

    Received:2020-09-15 Accepted: 2020-12-17 Available online:2020-12-17
    Show More
    10.1007/s11684-020-0783-8
    Cite this article
    Baokai Dou, Shichun Li, Luyao Wei, Lixin Wang, Shiguo Zhu, Zhengtao Wang, Zunji Ke, Kaixian Chen, Zhifei Wang.Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition[J].Frontiers of Medicine,2021,15(1):79-90.

    Abstract

    Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of , a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2 NK cell levels in the ischemic brain. Meanwhile, ASIV attenuated NK cell activating receptor NKG2D levels and reduced interferon-γ production. ASIV restored acetylation of histone H3 and the p65 subunit of nuclear factor-κB in the ischemic brain, suggesting inhibition of histone deacetylase (HDAC). Simultaneously, ASIV prevented p65 nuclear translocation. The effects of ASIV on reducing CCL2 production, restoring acetylated p65 levels and preventing p65 nuclear translocation were mimicked by valproate, an HDAC inhibitor, in astrocytes subjected to oxygen-glucose deprivation. Our findings suggest that ASIV inhibits post-ischemic NK cell brain infiltration and activation and reverses NK cell deficiency in the periphery, which together contribute to the beneficial effects of ASIV against brain ischemia. Furthermore, ASIV’s effects on suppressing NK cell brain infiltration and activation may involve HDAC inhibition.

    Keywords

    astragaloside IV ; brain ischemia ; natural killer cells ; histone deacetylase ; nuclear factor-κB
    Previous article in issue
    article in issue Next
    登录后,您可以进行评论。请先登录

    评论

    评论

    • 所有评论
     咋就跳到顶部了
    2019-04-23 11:24:14
    回复 (0)
    inspur  手机账号
    2019-05-10 11:30:17
    回复 (0)

    Read

    54

    Download

    0

    Related Research

    Current Issue
      Current Issue
        Follow us
        Copyright © 2015 China Engineering Science Press.
        京ICP备11030251号
        Follow us
        Copyright © 2015 China Engineering Science Press.
        京ICP备11030251号