Abstract
The effect of air pollution on the lung function of adults with asthma remains unclear to date. This study followed 112 patients with asthma at 3-month intervals for 2 years. The pollutant exposure of the participants was estimated using the inverse distance weight method. The participants were divided into three groups according to their lung function level at every visit. A linear mixed-effect model was applied to predict the change in lung function with each unit change in pollution concentration. Exposure to carbon monoxide (CO) and particles less than 2.5 micrometers in diameter (PM2.5) was negatively associated with large airway function in participants. In the severe group, exposure to chronic sulfur dioxide (SO2) was negatively associated with post-bronchodilator forced expiratory flow at 50%, between 25% and 75% of vital capacity % predicted (change of 95% CI per unit: −0.34 (−0.55, −0.12), −0.24 (−0.44, −0.03), respectively). In the mild group, the effect of SO2 on the small airways was similar to that in the severe group, and it was negatively associated with large airway function. Exposure to CO and PM2.5 was negatively associated with the large airway function of adults with asthma. The negative effects of SO2 were more evident and widely observed in adults with severe and mild asthma than in adults with moderate asthma. Patients with asthma react differently to air pollutants as evidenced by their lung function levels.