Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2008, Volume 2, Issue 2 doi: 10.1007/s11705-008-0038-8

Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts

Green Chemistry and New Catalytic Material Laboratory, Beijing Institute of Petrochemical Technology

Available online: 2008-06-05

Next Previous

Abstract

Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H and characterized by X-ray diffraction (XRD), BET, temperature-programmed desorption of ammonia (NH-TPD) and X-ray photoelectron spectroscopy (XPS). The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined. The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene, pyridine, dibenzothiophene, carbazole and diesel oil as the feedstock. The TiO, -AlO supports and the Ni, Co promoters could remarkably increase and stabilize active W species on the catalyst surface. A suitable amount of Ni (3%–5%), Co (5%–7%) and V (1%–3%) could increase dispersivity of the W species and the BET surface area of the WP/-AlO catalyst. The WP/-AlO catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities. The Ni, Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/-AlO catalyst. The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/-AlO catalyst. In general, a support or promoter in the WP/-AlO catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.

Related Research