Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2008, Volume 2, Issue 3 doi: 10.1007/s11705-008-0055-7

Preparation and sedimentation behavior of conductive polymeric nanoparticles

State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University;

Available online: 2008-09-05

Next Previous

Abstract

A facile route to prepare FeO/polypyrrole (PPY) core-shell magnetic nanoparticles was developed. FeO nanoparticles were first prepared by a chemical co-precipitation method, and then FeO/PPY core-shell magnetic composite nanoparticles were prepared by in-situ polymerization of pyrrole in the presence of FeO nanoparticles. The obtained nanoparticles were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and laser particle size analyzer. The images indicate that the size of FeO particles is about 10 nanometers, and the particles are completely covered by PPY. The FeO/PPY core-shell magnetic composite nanoparticles are about 100 nanometers and there are several FeO particles in one composite nanoparticle. The yield of the composite nanoparticles was about 50%. The sedimentation behavior of FeO/PPY core-shell magnetic nanoparticles in electrolyte and soluble polymer solutions was characterized. The experimental results indicate that the sedimentation of particles can be controlled by adjusting electrolyte concentration, solvable polymers and by applying a foreign field. This result is useful in preparing gradient materials and improving the stability of suspensions.

Related Research