Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2016, Volume 10, Issue 3 doi: 10.1007/s11705-016-1582-2

Polymeric micelle nanocarriers in cancer research

School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA

Accepted: 2016-07-27 Available online: 2016-08-23

Next Previous

Abstract

Amphiphilic block copolymers (ABCs) assemble into a spherical nanoscopic supramolecular core/shell nanostructure termed a polymeric micelle that has been widely researched as an injectable nanocarrier for poorly water-soluble anticancer agents. The aim of this review article is to update progress in the field of drug delivery towards clinical trials, highlighting advances in polymeric micelles used for drug solubilization, reduced off-target toxicity and tumor targeting by the enhanced permeability and retention (EPR) effect. Polymeric micelles vary in stability in blood and drug release rate, and accordingly play different but key roles in drug delivery. For intravenous (IV) infusion, polymeric micelles that disassemble in blood and rapidly release poorly water-soluble anticancer agent such as paclitaxel have been used for drug solubilization, safety and the distinct possibility of toxicity reduction relative to existing solubilizing agents, e.g., Cremophor EL. Stable polymeric micelles are long-circulating in blood and reduce distribution to non-target tissue, lowering off-target toxicity. Further, they participate in the EPR effect in murine tumor models. In summary, polymeric micelles act as injectable nanocarriers for poorly water-soluble anticancer agents, achieving reduced toxicity and targeting tumors by the EPR effect.

Related Research