Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2018, Volume 12, Issue 1 doi: 10.1007/s11705-017-1692-5

Detection of CO

. Laboratoire Catalyse et Spectrochimie (LCS), ENSICAEN, CNRS, Normandy University, 14000 Caen, France.. Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT), ENSICAEN, CNRS, Normandy University, 14000 Caen, France

Accepted: 2018-01-19 Available online: 2018-02-26

Next Previous

Abstract

Detection of oxygen and carbon dioxide is important in the field of chemical and biosensors for atmosphere and biosystem monitoring and fermentation processes. The present study reports on the preparation of zeolite films doped with iron nanoparticles for detection of CO and O in gas phase. Pure nanosized LTL type zeolite with monomodal particle size distribution loaded with iron (Fe-LTL) was prepared under hydrothermal condition from colloidal precursor suspensions. The zeolite was loaded with iron to different levels by ion exchange. The Fe-LTL suspensions were used for preparation of thin films on silicon wafers via spin coating method. The reduction of the iron in the zeolite films was carried out under H flow (50% H in Ar) at 300 °C. The presence of iron nanoparticles is proved by ultra-violet-visible spectroscopy. The properties of the films including surface roughness, thickness, porosity, and mechanical stability were studied. In addition, the loading and distribution of iron in the zeolite films were investigated. The Fe-LTL zeolite films were used to detect O and CO in a concentration dependent mode, followed by IR spectroscopy. The changes in the IR bands at 855 and 642 cm (Fe–O–H and Fe–O bending vibrations) and at 2363 and 2333 cm (CO asymmetric stretching) corresponding to the presence of O and CO , respectively, were evaluated. The response to O and CO was instant, which was attributed to great accessibility of the iron in the nanosized zeolite crystals. The saturation of the Fe-LTL films with CO and O at each concentration was reached within less than a minute. The Fe-LTL films detected both oxygen and carbon dioxide in contrast, to the pure LTL zeolite film.

Related Research