Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2019, Volume 13, Issue 1 doi: 10.1007/s11705-018-1755-2

Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill

1. Institute of Mineral and Waste Processing, Waste Disposal and Geomechanics, Clausthal University of Technology, Clausthal 38678, Germany
2. Institute of Geotechnics, Slovak Academy of Sciences, Košice 04001, Slovakia
3. Nakase Refinery, Nihon Seiko Co., Ltd., Yabu-shi, Hyogo 667-1111, Japan

Accepted: 2018-12-03 Available online:2019-02-25

Next Previous


Chalcogenide nanostructured semiconductor, copper sulfide (CuS) was prepared from copper and sulfur powders in stoichiometric ratio by a simple, fast, and convenient one-step mechanochemical synthesis after 40 min of milling in an industrial eccentric vibratory mill. The kinetics of the mechanochemical synthesis and the influence of the physical properties of two Cu powder precursor types on the kinetics were studied. The crystal structure, physical properties, and morphology of the product were characterized by X-ray diffraction (XRD), the specific surface area measurements, particle size distribution and scanning electron microscopy. The XRD analysis confirmed the hexagonal crystal structure of the product-CuS (covellite) with the average size of the crystallites 11 nm. The scanning electron microscopy analysis has revealed that the agglomerated grains have a plate-like structure composed of CuS nanoparticles. The thermal analysis was performed to investigate the thermal stability of the mechanochemically synthesized CuS. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. The determined optical band gap energy 1.80 eV responds to the value of the bulk CuS, because of agglomerated nanoparticles. In addition, a mechanism of CuS mechanochemical reaction was proposed, and the verification of CuS commercial production was performed.

Related Research