Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2018, Volume 12, Issue 4 doi: 10.1007/s11705-018-1772-1

Spatial targeting evaluation of energy and environmental performance of waste-to-energy processing

1. Sustainable Process Integration Laboratory, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic
2. Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M1 3AL, UK

Accepted: 2018-12-21 Available online: 2019-01-03

Next Previous

Abstract

Waste-to-energy supply chains are important potential contributors to minimising the environmental impacts of municipal solid waste by reducing the amounts of waste sent to landfill, as well as the fossil fuel consumption and environmental footprints. Accounting for the spatial and transport properties of the waste-to-energy supply chains is crucial for understanding the problem and improving the supply chain designs. The most significant challenge is the distributed nature of the waste generation and the household energy demands. The current work proposes concepts and a procedure for targeting the size of the municipal solid waste collection zone as the first step in the waste-to-energy supply chains synthesis. The formulated concepts and the provided case study reveal trends of reducing the net greenhouse gas savings and energy recovery by increasing the collection zone size. Population density has a positive correlation with the greenhouse gas saving and energy recovery performance. For smaller zone size the energy recovery from waste approaches and in some cases may surpass the energy spent on waste transportation. The energy recovery and greenhouse gas savings remain significant even for collection zones as large as 200 km2. The obtained trends are discussed and key directions for future work are proposed.

Related Research