Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2019, Volume 13, Issue 4 doi: 10.1007/s11705-019-1835-y

Pore-scale simulation of water/oil displacement in a water-wet channel

. School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK.. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Accepted: 2019-10-09 Available online: 2019-10-09

Next Previous

Abstract

Water/oil flow characteristics in a water-wet capillary were simulated at the pore scale to increase our understanding on immiscible flow and enhanced oil recovery. Volume of fluid method was used to capture the interface between oil and water and a pore-throat connecting structure was established to investigate the effects of viscosity, interfacial tension (IFT) and capillary number ( ). The results show that during a water displacement process, an initial continuous oil phase can be snapped off in the water-wet pore due to the capillary effect. By altering the viscosity of the displacing fluid and the IFT between the wetting and non-wetting phases, the snapped-off phenomenon can be eliminated or reduced during the displacement. A stable displacement can be obtained under high number conditions. Different displacement effects can be obtained at the same number due to its significant influence on the flow state, i.e., snapped-off flow, transient flow and stable flow, and ultralow IFT alone would not ensure a very high recovery rate due to the fingering flow occurrence. A flow chart relating flow states and the corresponding oil recovery factor is established.

Related Research