Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2020, Volume 14, Issue 6 doi: 10.1007/s11705-019-1900-6

Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides

. Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9, Canada.. Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 0X4, Canada

Accepted: 2020-02-26 Available online: 2020-02-26

Next Previous

Abstract

Volatile organic compounds (VOCs) are among the major sources of air pollution. Catalytic ozonation is an efficient process for removing VOCs at lower reaction temperature compared to catalytic oxidation. In this study, a series of alumina supported single and mixed manganese and cobalt oxides catalysts were used for ozonation of acetone at room temperature. The influence of augmenting the single Mn and Co catalysts were investigated on the performance and structure of the catalyst. The manganese and cobalt single and mixed oxides catalysts of the formula Mn10%-CoX and Co10%-MnX (where X= 0, 2.5%, 5%, or 10%) were prepared. It was found that addition of Mn and Co at lower loading levels (2.5% or 5%) to single metal oxide catalysts enhanced the catalytic activity. The mixed oxides catalysts of (Mn10%-Co2.5%) and (Mn10%-Co5%) led to acetone conversion of about 84%. It is concluded that lower oxidation state of the secondary metal improves ozone decomposition and oxidation of acetone.

Related Research