Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2021, Volume 15, Issue 2 doi: 10.1007/s11705-020-1957-2

A density functional theory study on the mechanism of Dimethyl ether carbonylation over heteropolyacids catalyst

Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

Received: 2020-07-16 Accepted: 2020-09-10 Available online: 2020-09-10

Next Previous

Abstract

Dimethyl ether (DME) carbonylation is considered as a key step for a promising route to produce ethanol from syngas. Heteropolyacids (HPAs) are proved to be efficient catalysts for DME carbonylation. In this work, the reaction mechanism of DME carbonylation was studied theoretically by using density functional theory calculations on two typical HPA models (HPW, HSiW). The whole process consists of three stages: DME dissociative adsorption, insertion of CO into methoxyl group and formation of product methyl acetate. The activation barriers of all possible elementary steps, especially two possible paths for CO insertion were calculated to obtain the most favorable reaction mechanism and rate-limiting step. Furthermore, the effect of the acid strength of Brønsted acid sites on reactivity was studied by comparing the activation barriers over HPW and HSiW with different acid strength, which was determined by calculating the deprotonation energy, Mulliken population analyses and adsorption energies of pyridine.

Related Research