Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2021, Volume 15, Issue 4 doi: 10.1007/s11705-020-1990-1

Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

. School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China.. Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia.. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received: 2020-09-29 Accepted: 2020-12-07 Available online: 2020-12-07

Next Previous

Abstract

Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H . Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni were assembled to form an MSM supported on Al O hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H /CO mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10 mol·m ·s ·Pa . Compared with the original Ti C T /Al O hollow fiber membranes, the permeation of hydrogen through the Ni -Ti C T /Al O membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni . The interlayer spacing of MSMs was tuned by Ni . During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni tailored Ti C T /Al O hollow fiber membranes can inspire promising industrial applications.

Related Research