Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2021, Volume 15, Issue 5 doi: 10.1007/s11705-021-2035-0

A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy

. Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.. Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.. Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland

Received: 2021-01-30 Accepted: 2021-03-19 Available online: 2021-03-19

Next Previous

Abstract

Design and exploitation of flame retardant polymers with high electrical conductivity are desired for polymer applications in electronics. Herein, a novel phosphorus-nitrogen intumescent flame retardant was synthesized from pentaerythritol octahydrogen tetraphosphate, phenylphosphonyl dichloride, and aniline. Low-density polyethylene was combined with the flame retardant and multi-walled carbon nanotubes to form a nanocomposite material via a ball-milling and hot-pressing method. The electrical conductivity, mechanical properties, thermal performance, and flame retardancy of the composites were investigated using a four-point probe instrument, universal tensile machine, thermogravimetric analysis, and cone calorimeter tests, respectively. It was found that the addition of multi-walled carbon nanotubes can significantly improve the electrical conductivity and mechanical properties of the low-density polyethylene composites. Furthermore, the combination of multi-walled carbon nanotubes and phosphorus–nitrogen flame retardant remarkably enhances the flame retardancy of matrixes with an observed decrease of the peak heat release rate and total heat release of 49.8% and 51.9%, respectively. This study provides a new and effective methodology to substantially enhance the electrical conductivity and flame retardancy of polymers with an attractive prospect for polymer applications in electrical equipment.

Related Research