Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2022, Volume 16, Issue 2 doi: 10.1007/s11705-021-2056-8

Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular design framework

Received: 14 Nov 202 Revised: 16 Mar 202 Accepted: 17 Jun 202 Available online: 2022-02-15

Next Previous

Abstract

Direct application of bio-oil from fast pyrolysis as a fuel has remained a challenge due to its undesirable attributes such as low heating value, high viscosity, high corrosiveness and storage instability. Solvent addition is a simple method for circumventing these disadvantages to allow further processing and storage. In this work, computer-aided molecular design tools were developed to design optimal solvents to upgrade bio-oil whilst having low environmental impact. Firstly, target solvent requirements were translated into measurable physical properties. As different property prediction models consist different levels of structural information, molecular signature descriptor was used as a common platform to formulate the design problem. Because of the differences in the required structural information of different property prediction models, signatures of different heights were needed in formulating the design problem. Due to the combinatorial nature of higher-order signatures, the complexity of a computer-aided molecular design problem increases with the height of signatures. Thus, a multi-stage framework was developed by developing consistency rules that restrict the number of higher-order signatures. Finally, phase stability analysis was conducted to evaluate the stability of the solvent-oil blend. As a result, optimal solvents that improve the solvent-oil blend properties while displaying low environmental impact were identified.

Related Research