• Home
  • Journals
  • Focus
  • Videos
  • Sign in

Outline

  • Abstract
  • Keywords

Figures(5)

标签(1)

Table 1

其他(2)

PDF
Document

Frontiers of Chemical Science and Engineering

2022, Volume 16,  Issue 5, Pages 564-591
    • PDF
    • collect

    Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes

    Available online:2021-11-19
    Show More
    10.1007/s11705-021-2109-z
    Cite this article
    .Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes[J].Frontiers of Chemical Science and Engineering,2022,16(5):564-591.

    Abstract

    Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.

    Keywords

    reverse osmosis ; polyamide ; thin film composite membranes ; chlorine resistance ; surface modification
    Previous article in issue
    article in issue Next
    登录后,您可以进行评论。请先登录

    评论

    评论

    • 所有评论
     咋就跳到顶部了
    2019-04-23 11:24:14
    回复 (0)
    inspur  手机账号
    2019-05-10 11:30:17
    回复 (0)

    Read

    0

    Download

    0

    Related Research

    Current Issue
      Current Issue
        Follow us
        Website Copyright © 2015 China Engineering Science Press
        京ICP备11030251号-2
        Follow us
        Website Copyright © 2015 China Engineering Science Press
        京ICP备11030251号-2