Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 3 doi: 10.1007/s11705-022-2213-8

Role of oxygen vacancy inducer for graphene in graphene-containing anodes

Available online: 2022-12-15

Next Previous

Abstract

Currently, graphene is only considered as a conductive additive and expansion inhibitor in oxides/graphene composite anodes. In this study, a new graphene role (oxygen vacancy inducer) in graphene/oxides composites anodes, which are treated at high-temperature, is proposed and verified using experiments and density functional theory calculations. During high-temperature processing, graphene forms carbon vacancies due to increased thermal vibration, and the carbon vacancies capture oxygen atoms, facilitating the formation of oxygen vacancies in oxides. Moreover, the induced oxygen vacancy concentrations can be regulated by sintering temperatures, and the behavior is unaffected by oxide crystal structures (crystalline and amorphous) and morphology (size and shape). According to density functional theory calculations and electrochemical measurements, the oxygen vacancies enhance the lithium-ion storage performance. The findings can result in a better understanding of graphene’s roles in graphene/oxide composite anodes, and provide a new method for designing high-performance oxide anodes.

Related Research