Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2022, Volume 16, Issue 12 doi: 10.1007/s11705-022-2220-9

Room-temperature hydrogenation of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles

Available online: 2022-11-03

Next Previous

Abstract

Ultra-dispersed Ni nanoparticles (7.5 nm) on nitrogen-doped carbon nanoneedles (Ni@NCNs) were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines. Two different crystallization methods (stirring and static) were compared and the optimal pyrolysis temperature was explored. Ni@NCNs were systematically characterized by wide analytical techniques. In the hydrogenation of p-chloronitrobenzene, Ni@NCNs-600 (pyrolyzed at 600 °C) exhibited extraordinarily high performance with 77.9 h–1 catalytic productivity and > 99% p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions (90 °C, 1.5 MPa H2), showing obvious superiority compared with reported Ni-based catalysts. Notably, the reaction smoothly proceeded at room temperature with full conversion and > 99% selectivity. Moreover, Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups (halogen, nitrile, keto, carboxylic, etc.), and could be easily recycled by magnetic separation and reused for 5 times without deactivation. The adsorption tests showed that the preferential adsorption of –NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene, thus achieving high p-chloroaniline selectivity. While the high activity can be attributed to high Ni dispersion, special morphology, and rich pore structure of the catalyst.

Related Research