Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 4 doi: 10.1007/s11705-022-2231-6

Simultaneous removal of total oxidizable carbon, phosphate and various metallic ions from HO solution with amino-functionalized zirconia as adsorbents

Received: 2022-06-01 Accepted: 2023-01-10 Available online: 2023-01-10

Next Previous

Abstract

Amino-functionalized zirconia was synthesized by the co-condensation method using zirconium butanol and 3-aminopropyltriethoxy silane for the simultaneous removal of various impurities from aqueous 30% H2O2 solution. The results of Fourier transform infrared (FTIR) and Zeta potential showed that the content of N in amino-functionalized zirconia increased with the added amount of 3-aminopropyltriethoxy silane. Accordingly, the removal efficiency of total oxidizable carbon, phosphate and metallic ions from the H2O2 solution increased. The adsorbent with an N content of 1.62% exhibited superior adsorption performance. The removal efficiency of 82.7% for total oxidizable carbon, 34.2% for phosphate, 87.1% for Fe3+, 83.2% for Al3+, 55.1% for Ca2+ and 66.6% for Mg2+, with a total adsorption capacity of 119.6 mg·g–1, could be achieved. The studies conducted using simulated solutions showed that the adsorption process of phosphate on amino-functionalized zirconia is endothermic and spontaneous, and the behaviors could be well described by the pseudo-second-order model and Langmuir model with a maximum adsorption capacity of 186.7 mg·g–1. The characterizations of the spent adsorbents by Zeta potential, FTIR and X-ray photoelectron spectroscopy revealed that the adsorption mechanism of phosphate is predominantly electrostatic attraction by the protonated functional groups and complementary ligand exchange with zirconium hydroxyl groups.

Related Research